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Abstract

Logic programming with answer set semantics has been considered appealing rule-

based formalism language and applied in information security areas. In this thesis,

we investigate the problems of authorization in distributed environments and secu-

rity protocol verification and update.

Authorization decisions are required in large-scale distributed environments, such

as electronic commerce, remote resource sharing, etc. We adopt the trust manage-

ment approach, in which authorization is viewed as a “proof of compliance” problem.

We develop an authorization language AL with nonmonotonic feature as the pol-

icy and credential specification language, which can express delegation with depth

control, complex subject structures, both positive and negative authorizations, and

separation of duty concepts. The theoretical foundation for language AL is the

answer set semantics of logic programming. We transform AL to logic programs

and the authorization decisions are based on answer sets of the programs. We also

explore the tractable subclasses of language AL.

We implement a fine grained access control prototype system for XML resources,

in which the language AL∗ simplified from AL is the policy and credential specifi-

cation language. We define XPolicy , the XML format of AL∗, which is a DTD for

the XML policy documents. The semantics of the policy is based on the semantics

of language AL. The system is implemented using Java programming.

We investigate the security protocol verification problem in provable security

approach. Based on logic programming with answer set semantics, we develop a

unified framework for security protocol verification and update, which integrates

protocol specification, verification and update. The update model is defined using

forgetting techniques in logic programming. Through a case study protocol, we

demonstrate an application of our approach.
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Chapter 1

Introduction

1.1 Motivation

For a long time, logic programming and rule-based formalisms have been consid-

ered appealing policy specification languages, which have been demonstrated by a

large body of literatures [4, 6, 58, 70, 82]. Since Answer Set Programming (ASP,

logic programming with answer set semantics) emerged as a new logic programming

paradigm in the late 1990s, having its roots in nonmonotonic reasoning, deductive

database and logic programming with negation as failure, it has been regarded as a

primary candidate for an effective knowledge representation tool. This view has been

boosted by the emergence of highly efficient solvers for ASP, such as Smodels[74],

and Dlv[50, 51]. The basic idea of ASP is to represent a given problem by a logic

program each of whose answer sets correspond to one of solutions, and then use an

answer set solver for computing answer sets of the program.

The most common type of policies are security policies, which are used to specify

the principal’s behaviors in the system (such as permitting or prohibiting some

particular actions). In a broad sense, policies can represent the interplay between

different principals. Therefore, ASP has been widely applied in information security

research areas, such as cryptanalysis [53], access control and authorization [17, 58,

69, 70], and security protocol verification [4]. In this thesis, we investigate the access

control and authorization and security protocol verification problems using the ASP

approach.

Access Control and Authorization:

Comparing with traditional access control techniques, the ASP approach, formal-

izing authorization specifications and evaluations using ASP, can separate policies

1



2 Introduction

from implementation mechanisms and provide simple semantics for policies by ASP

solvers. Jajodia et al. [57, 58] presented a logic programming based approach to inte-

grate multiple access control policies into one unified framework. Their approach can

specify authorization, conflict resolution, and integrity constraint checking. Bertino

et al. [17] also proposed a logic framework in which they considered hierarchically

structured domain of subjects, objects and access rights for authorization, and sup-

ported both negation as failure and classical negation.

However, the previous approaches mainly deal with authorization issues in cen-

tralized environments. With the development of Internet, there are increasing appli-

cations that require distributed authorization decisions. For example, in the applica-

tion of electronic commerce, many organizations use the Internet (or large Intranets)

to connect offices, branches, databases, and customers around the world. One es-

sential problem among those distributed applications is how to make authorization

decisions, which is significantly different from that in centralized systems or even in

distributed systems which are closed or relatively small. In these traditional scenar-

ios, the authorizer owns or controls the resources, and each entity in the system has

a unique identity. Based on the identity and access control policies, the authorizer is

able to make his/her authorization decision. In distributed authorization scenarios,

however, there are more entities in the system, which can be both authorizers and

requesters, and probably are unknown to each other. Quite often, there does not

exist a central authority that everyone trusts. Because the authorizer does not know

the requester directly, he/she has to use the information from the third parties who

know the requester better. He/She trusts these third parties only for certain aspects

to certain degrees. The trust and delegation issues make distributed authorization

different from traditional access control scenarios.

In recent years, the trust management approach, which was initially proposed

by Blaze et al. in [22], has received a great attention by many researchers [67, 70].

This approach frames the authorization decision as follows:

“ Does the set C of credentials prove that the request R complies with

the local security policy P? ”

from which we can see that there are at least two key issues for a trust management
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system:

1. Designing a high-level policy language to specify the security policy, creden-

tials, and requests which should have a rich expressiveness and be understand-

able.

2. Finding a well theoretical foundation for checking proof of compliance.

Several trust-management systems such as PolicyMaker [22], Keynote [25], SPKI

/SDSI [36, 43, 44, 45, 78], D1LP [70], and RT [69] have been developed. Here, we

only give a quick review about these trust management systems and provide detailed

descriptions in Section 1.2.2.

PolicyMaker [22] was the first trust management system. Its access policies and

credentials are called assertions which can be written in any programming language.

It initiates the proof of compliance by creating a “blackboard” for inter-assertion

communication, and a proof is achieved if the blackboard contains an acceptance

record indicating that a policy assertion approves the request. Keynote [25] is

the second generation of trust management systems and was designed according

to the same principles as PolicyMaker. Instead of writing policy and credentials in a

general-purpose procedural language, it adopts a specific expression. Both systems

do not provide the negative authorization and re-delegation control. SPKI/SDSI

has two kinds of certificates, name-definition certificates and authorization certifi-

cates. SPKI/SDSI [43, 44, 45, 78] can deal with the k-out-of -n structures and handle

certain types of nonmonotonic policies based on validity field of authorization certifi-

cates. It controls whether the authorization should be delegated further or not, but

there is no delegation depth control. D1LP [70] is a more expressive formalization

using Datalog as the sematic foundation. It supports delegation with depth control

and static and dynamic threshold structures. Although D1LP is able to delegate an

authorization to a conjunctive-subject structure, it can not deal with the request

from conjunctive subjects which is related to separation of duty, an important issue

in computer security literature. Moreover, it is not suitable to specify the authoriza-

tion for structured resources. RT framework [69] is a role-based trust management

framework which includes languages RT0, RT1, RT2, RTD, and RT T , where RTD,
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and RT T can be used separately or together, with RT0, RT1 or RT2. The seman-

tic foundation of RT is Datalog with constraints which enable RT to express the

authorization regarding structured resources and separation of duty policies.

Although the existing trust management systems may express rich delegation and

authorization policies, we observe that one important issue they do not consider is to

express nonmonotonic policy and its related problems. Let us consider the following

scenarios:

Scenario 1: In a large commercial organization, the system adminis-

trator trusts department managers and delegates them the privilege of

accessing the file server with depth 1. Then managers give the privilege

to the staff in their departments who are not on holiday and make them

access the file server.

Scenario 2: In a hospital database, there is a table which includes de-

tailed information for its doctors, such as name, education background,

specialized area, salaries and so on. The database administrator dele-

gates patients to read all information about doctors except their salaries.

Scenario 3: A bank requires two cashiers to approve a transaction

requested by customers if they do not have a bad credit history.

It is easy to observe that all the above scenarios not only involve complex dele-

gation and authorization controls, but also have nonmonotonic reasoning features.

Nonmonotonic reasoning, in its broadest sense, is reasoning to conclusions on the

basis of incomplete information. In Scenario 1, the managers permit the staff in

their departments to access the file server. However, when a staff is on holiday,

his/her manager will deny his/her access request. In Scenario 2, the patients have

been allowed to read the detailed information about their doctors. When a patient

try to get the salary of a doctor, the request is denied. In Scenario 3, two cashiers

can approve a transaction requested by a customer. However, if a customer has a

bad credit history, his/her transactions will be denied. We call these nonmonotonic

reasonings because the set of plausible conclusions does not grow monotonically with

increasing information. The previous approaches can not specify the policies and

satisfy all the requirements in the above scenarios.
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Security Protocol Verification:

In recent years, security protocols are increasingly being used in many diverse secure

electronic communications and electronic commerce applications. However, despite

an enormous amount of research effort expended in design and analysis of such

protocols, it is still notoriously hard to verify protocols. When the security protocols

are designed by hand, errors may creep in by combining protocols actions in ways not

foreseen by the designer [4]. Some protocols have been found erroneous or inaccurate

after they have been published many years, even since they have been proven secure

[72]. This situation is further complicated by the often ambiguous definition of the

goals of a security protocol, which makes it difficult to assess what really counts as

a flaw.

The study of cryptographic protocols has led to the dichotomization of crypto-

graphic protocol analysis techniques between the formal method approach and the

provable security approach [33], both of which have been developed in two mostly

different communities (detailed introduction in Section 1.2.3).

The formal method approach uses formal methods for protocol analysis, which

include model checking, theorem proving, and logic-based approaches (including

belief logics). The advantage of this approach is to verify protocols automatically

and to relieve humans of tedious and error prone parts of the mathematical proofs.

Moreover, this approach has the benefit of providing unambiguous specification of

system requirement and precise mathematical proofs of system properties, and is

able to prove insecurity by finding both known and unknown flaws in protocols

[33]. The Dolev and Yao adversary model [41] is one of the first contributions to

formal protocol analysis. Aiello and Massacci [4] presented an executable specifica-

tion language under logic programming with answer set semantics to verify security

protocols using the Dolev and Yao model. BAN logic [11] uses an approach very dif-

ferent from the Dolev and Yao adversary model. It is a logic of knowledge and belief,

which consists of a set of possible beliefs that can be held by principles, and a set of

inference rules for deriving new beliefs from old ones. The BAN logic consists of a

very simple, intuitive set of rules, which made it easy to use. Even so, it is possible

to point serious flaws in protocols. As a result, the logic gained wide attention and
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let to a host of other logics, either extending BAN logic [52] or applying the same

concept to different types of problems in cryptographic protocols [90]. The main

obstacle of this automatic approach is that cryptographic primitives are considered

as ideal blackboxes, which is under the strong assumptions.

The emphasis of provable security approach is put on showing a reduction proof

from the problem of breaking the protocol to another problem believed to be hard

[49]. In this approach, adversaries are probabilistic polynomial-time Turing ma-

chines which try to win a game. Began in 1980s [49], the approach was made

popular for key establishment protocols by Bellare and Rogaway [14], where they

formally defined an adversary model with an associated definition of security and

provided a proof of security for two-party entity authentication and key exchange

protocols. Since then, there have been some extensions to Bellare-Rogaway model

[1, 15, 16, 28]. Moreover, the related works resulted in two new proof models,

Canetti-Krawczyk modular model [29] and Shoup key exchange model [87]. The

main drawback of this approach is the difficulty of obtaining correct computational

proofs of security which is dramatically illustrated by the well-known problem with

the OAEP mode for public key encryption [88]. Choo et al. [32] pointed out the

undetected flaws in proof of protocols which have been proven secure.

Recently, some research works have been done to bridge the gap between the

above two approaches, which achieve automatic provability under classical com-

putational models. Following Abadi and Rogaway [2], several recent independent

projects developed by Backes et al. [8], Canetti et al. [30], Blanchet et al. [20, 21],

and Choo et al. [33] are along this line. However, their works mainly focus on

checking the protocols using some automatic tools. To our best knowledge, few

work has been done using logic programming as a specification tool to provide au-

tomatic provability under classical computational models. Moreover, the previous

approaches do not consider the update of insecure protocols.

In this thesis, we explore the distributed authorization and security protocol ver-

ification problems using Answer Set Programming. We adopt the trust management

approach to investigate the distributed authorization issues and develop a unified

framework for security protocol verification and update.
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1.2 Background Knowledge

1.2.1 Answer Set Programming

Answer Set Programming denotes logic programming with the answer set semantics.

In this section, we introduce the basic knowledge of logic programs and present the

definition of the answer set semantics [9, 47]. In addition, we also introduce a widely

used answer set programming solver, Smodels [74, 89].

A logic program consists of a finite set of rules. A rule is of the form:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

where m, n ≥ 0, n ≥ m, and each Li is a literal. We call not Li a negative literal. A

program only consisting of rules which do not include negative literals is a definite

logic program. Otherwise, it is a normal logic program.

A definite logic program has a unique answer set which is the minimal Herbrand

model of this program.

Gelfond and Lifschitz [47] proposed answer sets of grounded normal logic pro-

grams that are based on the definition of reduct.

Definition 1.1 The reduct P S of a ground logic program P with respect to a set of

atoms S is the definite program obtained from P by deleting

(1) each rule that has a negative literal not Li in its body with Li ∈ S;

(2) each negative literal in the bodies of the remaining rules.

The reduct P S is a definite logic program.

Definition 1.2 Let M(P S) be the answer set of the definite logic program P S. A

set of atoms S is an answer set of a normal logic program P iff S = M(P S).

A normal logic program may have one, more than one, or no answer set at all.

Example 1.1 Consider the following program Π:

p ← r, not q.

q ← not p.
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The program has a unique answer set {q}, which is the answer set of Π{q} = {q ← .}.

✷

Example 1.2 Consider the following program Π′ modified from Π:

p ← not q.

q ← not p.

The program has two answer sets {p} and {q}. ✷

Smodels [74] is a system for answer set computation. It consists of smodels,

an efficient implementation of the answer set semantics for ground normal logic

programs, and lparse, a front-end that transforms logic programs in the language

of Smodels into ground logic programs.

The language in Smodels [89] includes basic terms in logic programs and some

extended substance that consists of the special features of Smodels.

In Smodels, there are four different types of terms: constants, variables, func-

tions, and ranges. A constant is either a symbolic constant or numeric constant

starting with a lower case letter. A variable is a string of letters and numbers start-

ing with an upper case letter. A function is either a function symbol followed by a

parenthesized argument list or a built-in arithmetical expression. A range is of the

form:

start..end

where start and end are constant valued arithmetic expressions. A range is a no-

tational shortcut that is mainly used to define numerical domains in a compact

way.

An atom is of the form p (a1, . . . , an) where p is a n-ary predicate symbol and

a1, . . . , an (n ≥ 0) are terms. Generally, a literal is either an atom a or its negation

not a. We call them basic literals. In Smodels, there are three extended literals,

constraint literals, weight literals, and conditional literals. In this thesis, we do not

consider the weight situation and just give the descriptions for conditional literals

and constraint literals.

A conditional literal is of the form:

p (X) : q (X)
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where p (X) is any basic literal and q(X) is a domain predicate. Formally, a predicate

q of program Π is a domain predicate iff in the predicate dependency graph of Π,

every path starting from q is free of cycles that pass through a negative edge.

A constraint literal is of the form:

lower { l1, l2, . . . , ln } upper

where lower and upper are arithmetic expressions and l1, . . . , ln are basic or condi-

tional literals. A constraint literal is satisfied if the number of satisfied literals in

the body of the constraint is between lower and upper (inclusive).

Smodels supports not only basic rules in logic programs, but also choice rules.

We introduce them in the following.

- Basic rule:

A basic rule is of the form:

h ← a1, . . . , an, not b1, . . . , not bm.

If a1, . . . , an are in an answer set and b1, . . . , bm are not, the head atom h is

also put in the answer set.

If a rule has no head, all candidate models that satisfy the rule body are

discarded.

- Choice rule

A choice rule has the following form:

lower {h1, . . . , hn} upper ← body.

If the body of a choice rule is satisfied, the number of h1, . . . , hn that are true

in the answer set will be between lower and upper, inclusive.

For example, the program

1 {a, b}.

has three answer sets, {a}, {b}, and {a, b}.

Example 1.3 Consider the program:

q(1..2).

a ← 1{p(X) : q(X)}.
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The two rules will be grounded to give

q(1). q(2).

a ← 1{ p(1), p(2) }.

✷

Semantically the expansion of conditions takes place after the variables that also

occur in another part of the rule are instantiated, which is illustrated in the following

example.

Example 1.4 Consider the program:

d(1..2).

a(X) ← 1{ p(X, Y ) : d(Y ) }, d(X).

the variable X will be first instantiated to give the program

d(1). d(2).

a(1) ← 1{ p(1, Y ) : d(Y ) }, d(1).

a(2) ← 1{ p(2, Y ) : d(Y ) }, d(2).

In the next step the conditions are expanded to give

d(1). d(2).

a(1) ← 1{ p(1, 1), p(1, 2) }, d(1).

a(2) ← 1{ p(2, 1), p(2, 2) }, d(2).

✷

1.2.2 Overview of Access Control

Access control is an important security mechanism controlling which principals (per-

sons, processes, machines, and so on) have access to which resources. It provides

confidentiality, integrity, and availability services for information systems. Nowa-

days, access control is pervasively used in application software, middleware, oper-

ating systems, and hardware systems. The process of developing an access control

system is usually considered from different levels of abstraction [84], policies, models,

and mechanisms. The concepts can be defined in the access control context as:
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1. Policy: high-level guidelines or rules, which describe how to control accesses

and determine the access decisions.

2. Model: formal representation of the access control policy and its functionality.

3. Mechanism: low-level functions implementing the controls determined by the

model.

Based on how the policy controls accesses, access control policies are gener-

ally classified as Mandatory Access Control (MAC), Discretionary Access Control

(DAC), and Role-based Access Control (RBAC). Currently the widespread use of

Internet and global internet-worked infrastructures addresses the new access control

requirements for distributed environments, delegation of authorization and support

for distributed information sources. The traditional solutions for distributed access

control use certificates and public key cryptography to identify principals in the sys-

tem and make decisions with respect to access control policies. Trust management

approach [22, 23, 24, 25] proposed an authorization-based access control, in which

the identity of the user accessing a resource is unknown and authorizations or per-

missions are bound directly to public keys instead of identities. In the following, we

introduce MAC, DAC, RBAC, and Trust Management in more details.

Mandatory Access Control

MAC is based on predefined regulations determined by a central authority. The

users in the system cannot change any kind of rules. The mandatory policies are

known as multilevel security policies, which were first introduced by Bell and La-

Padula [12], and were first implemented in the Multics operating system [13]. MAC

policies have been used specially in military environments where there is a clear and

rigid hierarchy of authority [35]. The Bell-LaPadula model [12] and Biba model [19]

are two popular models for MAC policies.

• The Bell-LaPadula Model

In the Bell-LaPadula Model, the system is composed of subjects, objects and

actions. Objects and subjects are classified into access classes. Each access

class has a security level and a set of categories. A security level is an element
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from an ordered set, which determines the sensitivity of the object and subject.

For example, a typical security level set is:

TopSecret > Secret > Confidential > Unclassified

A set of categories is a subset from an unordered set, which corresponds to

functional or competence areas. For example:

Army, Navy, Nuclear, Administration, ...

Between two access classes there is a dominance relationship, denoted as ‘≥’.

A class c1 dominates a class c2 if and only if: (1) the security level of c1 is

greater than or equal to that of c2, and (2) the categories of c1 include those

of c2.

Formally, the Bell-LaPadula model presents a set of subjects S, objects O, and

actions A. The set of access classes is AC = L × p(C), where L denotes the

set of security levels, C denotes a set of categories, p(C) denotes the powerset

of C and × denotes the cartesian product. The dominance relationship(≥) is

defined as:

∀x = (L1, C1), y = (L2, C2), x ≥ y ↔ L1 ≥ L2 ∧ C1 ⊇ C2.

Where C1, C2 ⊆ C, L1, L2 ∈ L, and x, y ∈ AC.

The access classes form a lattice Lattice = (AC,≥). There is a function, which

applies to subjects and objects and returns its classification: λ : S ∪O → AC.

A set of states V is a triple (b,M, λ), where b ∈ (S,O, A) and determines

the current access requests (s, o, a), where s ∈ S, o ∈ O, and a ∈ A, and M

is a matrix determining the relationship of subjects, objects, and actions for

current state. The model states the following principals:

1. Simple security property (no-read-up): A state v satisfies the simple se-

curity property if and only if:

∀s ∈ S, o ∈ O : (s, o, read) ∈ b ⇒ λ(s) ≥ λ(o).

2. security *-property (no-write-down): A state v satisfies the *-property if

and only if:
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∀s ∈ S, o ∈ O : (s, o, write) ∈ b ⇒ λ(o) ≥ λ(b).

A state is secure if it satisfies both principals. A system is defined to be secure

if, from a secure state by executing a finite number of requests the system ends

in another secure state.

• The Biba Model

The Bell-LaPadula model protects the confidentiality of the information. It

does not provide any control over its integrity. Biba proposed the Biba model

based on Bell-LaPadula that provides integrity control [19].

The classification of subjects and objects follows the same idea of the Bell-

LaPadula model. There is also a dominance relationship between the classes,

which together with the classes defines a lattice.

The main principals can be seen analogous to the Bell-LaPadula principals:

1. Simple integrity property (no-read-down): A state v satisfies the simple

security property if and only if:

∀s ∈ S, o ∈ O : (s, o, read) ∈ b ⇒ λ(o) ≥ λ(s).

2. integrity *-property (no-write-up): A state v satisfies the *-property if

and only if:

∀s ∈ S, o ∈ O : (s, o, write) ∈ b ⇒ λ(s) ≥ λ(o).

If the two principals are satisfied, the system ensures the integrity of the

objects.

Due to the need for strong centralized control, the MAC policies are not very

suitable in corporate environments. MAC has become very popular in military-like

organizations, where there is a clear hierarchy and central authority.

Another important problem of MAC polices is known as covert channels, which

leak information about the system unintentionally. Solutions to avoid covert chan-

nels have been the focus of a lot of research efforts [7, 48]. One of the main problems

of covert channels is that they are very dependent to the implementation layer and

it is difficult to prevent them in the design of the model [73].
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Discretionary Access Control

In DAC, users are given some management capabilities to control and set access

rules over some objects. Normally, there are explicit rules to state who can do what

over which resources. A user can have the ability to pass its own privileges to other

users and grant or revoke authorization following the administration policy of the

system. The DAC policies and models are based on the access matrix first proposed

by Lampson [65]. Harrison, Ruzzo and Ullmann presented one of the first formal

models of access matrix, known as HRU model [55].

• Access matrix

The main goal of the access matrix is to describe the protection state of a

system. The access matrix considers subjects (S) that have privileges (also

called actions or rights) over protected objects (O). It is important to note

that in most environments, subjects are considered as a subset of objects, i.e.

S ⊆ O. The state of a system is defined by the triplet (S, O, A), where A is

the access matrix. Figure 1.1 shows the outline of the access matrix.

(S={S  ,S  ,...,Sn})

1O O2 Om

1O O2, ,Objects(O={             ... ,Om})

...

...

...

......

......... ... ...
Privileges of 

...

...

... ... ...

...

... ... ...

...

...

...Oj

Subject Si to object Oj

Si

Sn

211

1S

Subjects

Figure 1.1: Access matrix

In the access matrix, columns are objects, and rows are subjects. Each entry

of the matrix determines the privileges for a give subject over a given object.

The entry A[si, oj] contains the actions that subject si can perform over object

oi. For a simple example of an access matrix showed in Figure 1.2, we can

obtain that UserB can read and write FileA, which is also owned by him, that
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is A[UserB, F ileA] = {read, write, own}.

ProgramB

UserA

UserB

UserC

FileA FileB ProgramA

write

read
execute

read read execute

execute

read

write
read
own

read
execute

execute

read

Figure 1.2: An access matrix example

A straightforward implementation of the access matrix using a two-dimensional

array may be very inefficient due to the memory consumption. There are three

main approaches for a reasonable implementation of the access matrix, Autho-

rization Tables, Access Control Lists (ACL), and Capabilities. The authoriza-

tion table is composed of a set of triplets of the form 〈user, privilege, object〉

and each triplet is considered an authorization. Figure 1.3 illustrates the au-

thorization table for the access matrix of the example in Figure 1.2.

ACL is one of the most used implementation of the access matrix. In an

ACL, each object of the system has a list with the privileges for each subject.

The ACL stores the access matrix by columns. On the other hand, Capability

stores the access matrix by rows, in which each subject has a list with privileges

for each object. Figure 1.4 and 1.5 illustrate the ACL and Capabilities for the

access matrix examples of Figure 1.2, respectively.

• HRU model

In HRU model, changes to the state of a system were described as six primitive

operations: enter an action into the access matrix, delete an action from the

access matrix, create a subject, delete a subject, create an object, and delete

an object. Formally, HRU defines a command(α) as follows:

command α(X1, X2, . . . , Xk)

if r1 ∈ A[Xs1
, Xo1

] ∧ r2 ∈ A[Xs2
, Xo2

] ∧ . . . ∧ rm ∈ A[Xsm
, Xom

]

then op1; op2; . . . ; opn

end
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User Access mode Object

read

UserA

UserA

UserA

UserA

UserA

UserB

UserB

UserB

UserB

UserB

UserB

UserC

UserC

UserC

UserC

read

read

FileA

FileB

ProgramB

read

read

own

write

FileA

ProgramA

FileA

FileA

ProgramA

ProgramB

read

write FileB

ProgramB

execute

ProgramA

ProgramB

execute

execute

read

FileA

FileB

execute

execute

Figure 1.3: Authorization table example

Where n > 0, m > 0, each ri is an action, each opi is a primitive operation, si

and oi are integers between 1 and k, Xi for 0 < i < k are formal parameters,

Xsi
refers to a subject, and Xoi

refers to an object.

In [55] it is demonstrated that the safety problem of HRU model is undecid-

able. The only case where the problem is decidable is for the case of finite sets

of subjects and objects in a mono-operational system. However, the commands

in a mono-operational system can only have at most one primitive operation,

which turns out that mono-operational systems are not practical. To improve

the decidability of the safety problem, Sandhu proposed the Typed Access

Matrix (TAM ) [85] which is based on HRU model but introduces the notion

of strong type in it. Safety problem becomes decidable in polynomial time

cases where the system is monotonic, commands are limited to the parameters

and there is no cyclic creation.

Role-based Access Control
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UserA UserB

read

read

Nil

FileB UserA UserC

read

write

Nil

UserA

Nil

UserB

read

UserCUserBUserA

ProgramA

ProgramB

FileA UserC

read
own
read
write

Nil

read

execute execute

execute execute
execute

Figure 1.4: Access control list example

Role-based Access Control (RBAC) is to group privileges or authorizations that

can be applied to a group of users. RBAC was first proposed in [46], and has received

an increasing attention both from academic and commercial environments. In 2001,

NIST proposed a consensus model for RBAC, based on the Ferraiolo-Kuhn model

[46], in the framework developed by Sandhu [86]. The model was further refined

within the RBAC community and has been adopted by the American National

Standards Institute, International Committee for Information Technology Standards

(ANSI/INCITS) as ANSI INCITS 359-2004 [75].

The RBAC model was defined in terms of four model components: core RBAC,

Hierarchical RBAC, Static Separation of Duty Relations, and Dynamic Separation of

Duty Relations as shown in Figure 1.6. Core RBAC is required in any RBAC system,

but the other components are independent of each other and may be implemented

separately. The formal definition of RBAC model is referred to [75, 86].

• Core RBAC defines a minimum collection of RBAC elements, element sets

and relations for the RBAC model and components. The basic elements of
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UserC

read

UserA FileA FileB

Nil

Nil

FileA ProgramB

read

UserB

read

ProgramA ProgramB

read

ProgramA

own
read
write

execute
execute

execute
execute

Nil

FileBFileA ProgramB

read
write

read execute

Figure 1.5: Capability example

core RBAC are users (USERS), roles (RULES), objects (OBS), operations

(OPS), and permissions (PRMS), where a permission is defined as an approval

of a particular operation performed over one or more objects in the system.

Thus permissions establish a relation between operations and objects and can

be expressed as: PRMS = 2(OPS×OBS). The core RBAC also defines two

relations, user assignment (UA), and permission assignment (PA), both of

which are many-to-many mappings and denoted as UA ⊆ USERS×ROLES,

and PA ⊆ PRMS × ROLES respectively. In addition, core RBAC includes

a set of sessions (SESSIONS) where each session is a mapping between a user

and an activated subset of roles that are assigned to the user. The mapping is

established by two functions, user sessions which gives us the set of sessions

associated with a user and session roles which gives us the roles activated by

the session.

• Role hierarchy RBAC adds role hierarchy (RH) to the core RBAC, which

allows to structure roles to reflect an organization’s lines of authorization and

responsibility. Intuitively, a role hierarchy defines a permission inheritance re-

lation between roles. That is, role r1 inheriting role r2 means that all privileges

of r2 are also privileges of r1, denoted as r1 º r2. RH includes two kinds of
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USERS
ROLES

SESSIONS

(user assignment)
      UA

user_sessions

(permission
assignment)
      PA

OPS OBS

PRMS

(role hierarchy)

session_roles

DSD

SSD        RH

Figure 1.6: The RBAC Model

role hierarchy: general role hierarchy, and limited role hierarchy. General role

hierarchy supports multiple inheritance, which means that a role can inherit

permission from more than one role. In some scenarios, multiple inheritance

can introduce conflicts and problems. Limited role hierarchy restricts the gen-

eral role hierarchy by not allowing multiple inheritance.

• The third RBAC component, Static Separation of Duty (SSD) Relations,

enforce constraints in user assignments, which can be used in both of presence

and absence of role hierarchies. This component prevents conflict of interest

which may arise when a user obtains authorization for permissions associated

with conflicting roles.

• The fourth model component, Dynamic Separation of Duty (DSD) Rela-

tions, like SSD relations, are intended to limit the user’s permissions. However,

DSD Relations place constraints on the activation of roles. In addition, DSD

Relations support the principal of least privilege in that each user has different

levels of permission at different times, depending on the role being activated.

Trust Management

The important role of trust management in the area of open distributed and

decentralized systems has been recognized by many researchers. Matt Blaze and

colleagues [22] have coined the term trust management as “a unified approach to
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specify and interpret security policies, credentials, and relationships which allow

direct authorization of security-critical actions”. Under this approach public keys

are bound to authorization actions directly, and the authorization can be delegated

to third parties by credentials or certificates.

Several trust-management systems such as PolicyMaker [22, 23], Keynote [24, 25],

SPKI/SDSI [36, 43, 44, 45, 78], Referee [34], SD3 [59], D1LP [70], and RT framework

[69] have been developed in recent years. In the following section, we review some

trust management systems.

PolicyMaker [22, 23] was the first trust management system. The basic function

of the system is to process queries based on local policy and credentials that contain

the authorization information from trusted third parties.

The PolicyMaker language includes queries and assertions. Each query is a

request for performing a particular action from a particular public key or a sequence

of public keys with the form:

key1, key2, . . . , keyn REQUESTS ActionString

ActionStrings are application dependent messages that specify a trusted action

requested.

Assertions represent local policy and credentials from trusted third parties with

the form:

Source ASSERTS AuthorityStruct WHERE Filter.

It can be read as Source trusts the public keys enumerated in AuthorityStruct to

be associated with action strings that satisfy Filter. A Source denotes the source

of the assertion. There are two types of assertions, policy assertions which are local

policies, and certificates in which the Source is the public key of a third party.

AuthorityStruct specifies the public key to whom the assertion applies. Filter is

the predicate that action strings must satisfy for the assertion to hold.

PolicyMaker system initiates the proof of compliance by creating a “blackboard”

for inter-assertion communication, and a proof is achieved if the blackboard contains

an acceptance record indicating that a policy assertion approves the request.
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KeyNote [24, 25] is the second generation of trust management systems and was

designed according to the same principles as PolicyMaker. Instead of writing pol-

icy and credentials in a general-purpose procedural language, it adopts a specific

expression. In KeyNote, policies and credentials are called assertions and both of

them are specified using the same format. The main difference between them is that

policies are locally trusted and they do not need any signature. An example of a

KeyNote assertion extracted from [24] is showed in Figure 1.7.

KeyNote-Version:1
Authorizer: rsa-pkcs1-hex:“1023abcd”
Licensees: dsa-hex:“86512a1” ‖

rsa-pkcs-hex:“19abcd02”
Comment: Authorizer delegates read

access to either of the
Licensees

Conditions: ($file == “/etc/passwd” &&
$access == “read”) − >

{return “ok”}
Signature: rsa-md5-pkcs1-hex:“f00f5673”

Figure 1.7: Sample KeyNote assertion

KeyNote uses a depth-first search (DFS) algorithm that attempts to satisfy

at least one policy assertion. Satisfying an assertion entails satisfying both the

Conditions field and the Licensees key expression.

SPKI/SDSI was merged by SPKI (Simple Public Key Infrastructure) [44] and SDSI

(Simple Distributed Security Infrastructure) [78], both of which were motivated by

the inadequacy of public-key infrastructures based on global name hierarchies, such

as X.509 [56] and Privacy Enhanced Mail (PEM) [61]. SPKI/SDSI shares many

views with trust management approach. For instance, the main purpose of its

certificates is authorization instead of authentication. However, it does not define

an application independent trust management engine. Therefore, strictly speaking,

SPKI/SDSI is not a complete trust management system.

SPKI/SDSI has two kinds of certificates, name certificates which came from SDSI

and authorization certificates which came from SPKI. A name certificate binds a lo-

cal name to a principal or a more complex name. An authorization certificate dele-

gates a certain permission from a principal (the certificate’s issuer) to the certificate’s

subject. An authorization certificate includes the following five fields: “Issuer”, the
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principal who signs this certificate; “Subject”, the principal being authorized; “Au-

thority”, the specific permission being delegated; “Delegation”, a boolean value to

specify whether the subject can further delegate the authority received in this cer-

tificate; “Validity”, validity period or/and checking methods. SPKI/SDSI can deal

with the k-out-of -n structures and handle certain types of nonmonotonic policies

based on validity field of authorization certificates. It controls whether the autho-

rization should be delegated further or not, but there is no delegation depth control.

REFEREE [34] (Rule-controlled Environment For Evaluation of Rules, and Every-

thing Else) is a trust management system that provides a language for specifying

trust policies and policy-evaluation mechanisms for Web clients and servers. REF-

EREE uses PICS labels [77] as credentials. A PICS label states some properties of

a resource in the Internet. In this context, policies specify which credentials must

be disclosed in order to grant an action.

In REFEREE credentials are executed and their statements can examine state-

ments made by other credentials and even fetch credentials from the Internet. There-

fore, policies are needed to control which credentials are executed and which are not

trusted. The policies determine which statements must be made about a credential

before it is safe to run it. REFEREE improves PolicyMaker [22, 23] in the sense that

PolicyMaker assumes that credential-fetching and signature verification are done by

the calling application.

In REFEREE there are three kinds of data types: (1) Tri-values: is one of true,

false or unknown; (2) Statement lists: is a collection of assertions. A statement is

formed by some content and a context for the content. The interpretation of the

context depends on the agreement between REFEREE and the calling application.

A statement list is an unordered list of statements; (3) Programs: A program can

be a policy or a credential. A program takes a statement list defining the current

evaluation context and required/optional extra arguments as an input. It returns

a tri-value (the result of the program) and a statement list (a justification). The

program returns true if it is possible to infer compliance with a policy (credentials

were sufficient to grant the requested action). It returns false if it is not possible to

infer compliance (credentials were sufficient not to grant the action) or unknown if
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no inference could be made at all (credentials are not sufficient to take a decision:

neither for approving nor denying the action).

SD3 [59] (Secure Dynamically Distributed Datalog) is a trust management system

consisting of a high-level policy language, a local policy evaluator and a certificate

retrieval system. It provides three main features:

1. Certified evaluation: the certified evaluator computes not only an answer, but

also a proof that the answer is correct.

2. High-level language: SD3 policy abstracts from signature verification and cer-

tificate distribution. It makes policies easy to write and understand.

3. SD3 is programmable: Policies can be easily written and implemented.

SD3 language is an extension of Datalog. The language is extended with SDSI

global names [36]. A rule in SD3 is of the form:

T (x, y) : −K$E(x, y).

Where T (x, y) holds if a digital credential asserting E(x, y) and signed with the

private key of K was given. Whenever a global name is used, an authentication step

is needed. In addition, SD3 can refer to assertions in remote computers. Given the

rule

T (x, y) : −(K@A)$E(x, y).

The query evaluator must query a remote SD3 evaluator at an IP address A. This

gives SD3 the possibility to create “chains of trust”. The evaluator consists of three

elements: an optimizer, a cache, and a core evaluator. More novel implementation

techniques of the evaluator as well as the theoretical foundations of SD3 are described

in [91].

D1LP [70] is a logic based trust management language with features needed for

distributed authorization. The alphabet of D1LP consists of three disjoint sets: the

predicate symbols, the variables, and the constants. Variables start with “?”. The

security policy is specified by a program consisting of a finite set of rules written

using D1LP. The rule has the form: H if F , where H and F are statements issued
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by principals in the system. In D1LP, there are direct statements, delegation state-

ments, and representation statements. D1LP also supports delegation with depth

control and static and dynamic threshold structures. We extract an example from

[70] to demonstrate the syntax of D1LP as follows.

A merchant ShopA will approve a customer’s order if it can determine that the

customer has a good credit rating. ShopA trusts BankB and whomever BankB

trusts in determining credit ratings. ShopA also has a credential issued by BankB

saying that BankB believes that a principal has good credit if two out of three

particular credit-card companies certify that this principal has an account in good

standing. These policies and credentials are represented as follows:

ShopA says approveOrder(?U) if ShopA says creditRating(?U, good).

ShopA delegates creditRating(?U, ?R)2 to BankB.

BankB says creditRating(?U, good)

if threshold(2, [cardW, cardX, cardY ]) says accountGood(?U).

D1LP transforms the policy program into an ordinary logic program (OLP), and

answers access control queries using some backward OLP inference engine.

RT Framework [67, 68, 69] is a set of languages for representing policies and

credentials. It is specially suited for decentralized collaborative systems and for

attribute-based access control (ABAC). RT uses roles to represent attributes. An

entity has an attribute if it is a member of the corresponding role. The RT framework

consists of several parts which are described as follows.

• RT0 RT0 [67] is the most basic language of the RT set. In RT0 policy state-

ments take the form of role definitions. Role definitions have a head of the

form KA.R and a body. KA represents a principal while R is a role term. The

following describes the different kinds of constructions allowed in RT0:

1. Simple member (KA.R ← KD)

The principal KD is a member of the role KA.R.

2. Simple containment (KA.R ← KB.R1)

The role KA.R contains any principal that is a member of the role KB.R1.
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3. Linking containment (KA.R ← KA.R1.R2)

The role KA.R contains every role of the form KB.R2 for each KB which

is a member of the role KA.R1.

4. Intersection containment (KA.R ← KB1
.R1 ∩ . . . ∩ KBi

.Ri).

The role KA.R contains the intersection of the members of the roles,

KB1
.R1 ∩ . . . ∩ KBi

.Ri.

5. Simple delegation (KA.R ⇐ KB : KC .R2)

KA delegates its control over R to KB. If KC .R2 is present, KA restricts

its delegation in such a way that KB can only assigned members of KC .R2

to be members of KA.R.

6. Linking delegation (KA.R ⇐ KA.R1 : KC .R2)

KA delegates control over R to all the members of KA.R1 and the delega-

tion is controlled so only members of KC .R2 can be assigned as members

of KA.R.

• RT1 In RT0, roles do not take any parameters. RT1 role definitions have

the same form as the one in RT0 but they may contain parameterized roles.

In RT1 a role is of the form r(p1, . . . , pn). r is the role name and pi can be

name = c, name =?X[∈ S] (∈ S is optional) or name ∈ S where name

represents a name of a parameter, c represents a constant, ?X is a variable

and S is a value set.

• RT2 RT2 adds to RT1 logical objects (also called o-set) in order to group

permissions between objects. A credential in RT2 is either an o-set-definition

or a role-definition. An o-set-definition is formed by an entity followed by an

o-set identifier K.o(h1, . . . , hn) and allows constraint variables with dynamic

value sets.

• RTT RT T introduces the notion of manifold roles to achieve agreement of mul-

tiple principals from both one set and disjoint sets for supporting separation

of duty security principle. A manifold role defines a set of principals. Each of

these sets is a set of principals whose collaboration satisfies the manifold role.

Manifold roles are constructed as follows:
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1. Product containment (KA.R ← KB1
.R1 ⊙ . . . ⊙ KBk

.Rk)

The role KA.R contains every principal set p such that p = p1 ∪ . . . ∪ pk

and pi is a member of KBi
.Ri for each 0 < i ≤ k.

2. Exclusive product containment (KA.R ← KB1
.R1 ⊗ . . . ⊗ KBk

.Rk)

The role KA.R contains every principal set p such that p = p1 ∪ . . . ∪ pk,

pi ∩ pj = φ for 1 < i 6= j < k, and pi is a member of KBi
.Ri.

• RTD RTD provides delegation of role activations which express selective use of

capacities and delegation of these capacities. A delegation credential presented

by a principal D takes the form of D
D as A.R
−→ B0. With it a principal D

activates the role A.R to use in a session B0. In addition, B0 can further

delegate this role activation to B1 with B0
D as A.R
−→ B1.

1.2.3 Security Protocol Verification

There exist two main approaches for analyzing the security of protocols: formal

method approach and provable security approach.

In formal method approach, the Dolev and Yao adversary model [41] is often

the de-facto standard used in formal specification. For formal methods to verify

security protocols, the formalization process itself is a serious bottleneck. It is not

a trivial task for protocol designers and analysts who are not experts in formal

methods to specify the protocols using complicated systems. Logic programming

has a readable syntax and can express properties of messages, keys, principal actions

(such as send, get and intercept messages) naturally. Moreover, logic programming

with answer set semantics has some efficient solvers, which make the formalization

language executable and output models (if any) to show the attacks. Aiello and

Massacci [4] presented an executable specification language ALSP under Answer

Set Programming to verify security protocols using the Dolev and Yao model.

In the provable security approach, Bellare and Rogaway [14] provided the first

formal definition for an adversary model with associated definition of security, which

is Bellare-Rogaway model. In independent yet related work, Canetti and Krawczyk

[29] developed Canetti-Krawczyk modular model.
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Recently, some comprehensive efforts have been made for unifying the two ap-

proaches. Choo et al. [33] is along this line, which provided a formal specification and

machine analysis of Canetti-Krawczyk modular model using Asynchronous Product

Automata (APA), a universal state-based formal method. In this section, we intro-

duce the ASP based security protocol verification proposed by Aiello and Massacci

[4] and the integrated approach developed by Choo et al. [33].

• Verifying security protocols as planning in ASP

Aiello and Massacci [4] took representing the problem of verifying security

protocols as a planning problem. A planning problem in the context of secu-

rity protocols, where agents exchange messages and are subject to attacks by

intruders, is formulated as follows:

1. the initial state includes the keys known to agents and the messages

already exchanged (typically none) in the beginning of the protocol run;

2. the goal state is an unwanted situation where some security violation has

occurred;

3. actions are exchanges of messages among agents.

If a solution of the planning problem exists, then it is a sequence of actions

leading to an attack.

Aiello and Massacci [4] presented ALSP (Action Language for Security Proto-

cols), an executable specification language for representing security protocols,

and checking the possibility of attacks. Smodels is used for model generation

of ALSP specification to verify whether plans to attack a protocol exist.

The language ALSP consists of the following predicates:

– Basic sort predicates:

ag(A), nonce(N), key(K).

– Constructor for messages:

{M}K , M1||M2, h(M), M1 ⊕ M2.
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– Predicates for properties of messages:

part(M1, M), invKey(K, K1), symKey(K), shareKey(K, A,B),

asymKeyPair(Kpriv,Kpub).

– Predicates for fluents:

knows(A,M, T ), synth(A,M, T ), says(A,B,M, T ), gets(B, M, T ),

notes(A, M, T ).

Language ALSP can be used to model messages, knowledge, agent actions,

protocols, and attacks. We give the following rules as examples to illustrate

how to specify security protocols using ALSP . Refer to [4] for detailed mod-

elling steps.

knows(A,M, T ) ← got(A,M, T ) (1.1)

knows(A,M, T ) ← said(A,B, M, T ) (1.2)

The rules 1.1 and 1.2 denote A know something because A either got it or said

it to somebody.

{gets(B,M, T )} ← says(A,B,M, T ) (1.3)

{gets(spy, M, T )} ← says(A,B,M, T ) (1.4)

The rule 1.3 uses the choice rule to specify that if A attempts to send a message

M to B at time T , then B may receive it. The rule 1.4 models the intruder

may get any exchanged messages in the protocol run with respect to the Dolev

and Yao model.

• An integrated approach for verifying security protocols

Choo et al. [33] presented a formal specification framework for security proto-

col verification in the setting of a plan problem using APA, which is supported

by the Simple Homomorphism Verification Tool (SHVT). This framework an-

alyzes the protocols with claimed security proof under the Canetti-Krawczk

modular model [29]. The tripartite key exchange protocols 8 and 9 of Hitch-

cock, Boyd, and González Nieto [54] are case study protocols in this work,
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both of which carry claimed security proofs in the Canetti-Krawczk modular

model.

The framework consists of protocols specification and analysis. Similar to the

formulation of the planning problem, the protocol specification has three parts:

description of initial state, description of goal state and description of possible

actions. In the APA specification, the protocol principals are modelled as a

family of elementary automata. The various state spaces of the principals are

modelled as a family of state sets. The channel through which the elementary

automaton communicates is modelled by the addition and removal of messages

from the shared state component Network, which is initially empty. Each of

the elementary automata only has access to the particular state components

to which it is connected. In addition to the regular protocol principals, an

adversary A is specified which can access to the shared state component Net-

work, but can not access to the internal states of the principals. We extract

Figure 1.8 from [33] to illustrate a two-party protocol specification in APA.

A B

A_StateA_Keys B_State B_Keys

Transcript

Network

_State
A

A

Figure 1.8: Graphical illustration of a two-party protocol in APA specification

After the specification process, a protocol can be analyzed using SHV T . If an

agent has achieved its goal from the initial state to the goal state, a workable

plan exists and the attack sequence can be found through tracing the path.

We illustrate the protocol analysis process through Figure 1.9 extracted from

[33], in which circles represent the various states of the protocol execution and



30 Introduction

the lines with arrows represent the state transitions between two states.

......

State transition

......

......

.

.

.

.

.

.

Goal 1

Goal 2

Initial

Figure 1.9: A reachability graph: protocol analysis in SHVT

1.3 Outline and Contributions of Thesis

We present a brief outline of the thesis and the main contributions.

In Chapter 2, we develop an authorization language AL for the policy specifica-

tion in open distributed environments, present the techniques of transforming AL

programs to executable logic programs, and investigate the computational issues in

AL. Compared with previous approaches, AL is characterized by the nonmono-

tonic feature, which makes it possible to specify nonmonotonic policies and reason

to conclusions based on incomplete information. Moreover, AL has a rich expressive

power which is able to specify delegation with the depth control, complex subject

structures, and separation of duty policies. The above features make AL suitable for

the representation of complex authorization policies, especially in distributed envi-

ronments. We define the semantics of AL using the Answer Set Programming. Our

formulation has implementation advantages due to recent development of Answer

Set Programming technology in AI community, where many existing approaches do

not have. We identified more general tractable classes of AL domains by applying

some computational results in ASP. We considered that when an extended logic

program is locally stratified or call-consistent, then this program must have an an-
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swer set, and such answer set can be computed in polynomial time. By examining

proper conditions, we identified two subclasses of AL domains, for which their LAns

translation will always be locally stratified or call-consistent. In this way, any query

under those types of domains can be evaluated in polynomial time.

In Chapter 3, we implement a fine grained access control prototype system for XML

documents with the delegation feature using Java, which is the implementation of

the language AL. Compared with related approaches, our system not only protects

XML resources in fine grained level, but also support the complex policy specifica-

tion permitted in AL. Moreover, we specify the policies using XML documents. So

in our system, both protected resources and authorization policies are XML docu-

ments stored in Xindice, a native XML databases, instead of relational databases,

which makes us access the XML documents more convenient.

In Chapter 4, we propose a unified framework for integrating the protocol specifi-

cation, verification, and update together based on Answer Set Programming. We

define a security protocol specification language Lsp, specify a security protocol

through Lsp, verify the protocol using the semantic of Answer Set Programming,

and update the protocol by the forgetting technique in logic programs. Compared

with previous approaches which usually only consist of the protocol verification, our

framework integrates the protocol update. Moreover, forgetting in logic programs,

an efficient technique for logic programming update has been used to repair the

insecure protocols.

Finally, in Chapter 5, we present a summary of the thesis and discussions of possible

research directions.

Note that parts of this thesis have already been published in journals and con-

ference papers [93, 94, 95, 96].
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Chapter 2

AL−An Authorization Language

Authorization scenarios introduced in Chapter 1 present nonmonotonic reasoning

and complex delegation and authorization features that usually can not be specified

by existing trust management systems. In this chapter, we propose an authorization

language AL which has the following features:

• Nonmonotonic reasoning through negation as failure in logic programming

• Both positive and negative authorizations

• Flexible conflict resolving policies

• Complex subject structures including subject set, and static and dynamic

threshold structures

• Separation of duty policy

• Partial delegation and authorization

Using AL, the authorization and associated delegation policies in a specific prob-

lem domain are represented as a domain description DAL, which is a policy base

including local policy and credentials from the trusted third parties. For each access

request to the resource, the decision is made on the basis of reasoning mechanism

through Answer Set Programming. It is well known that deciding whether an ex-

tended logic program has an answer set is NP-complete [9]. This implies that in

general we may need an exponential algorithm to compute a program’s answer sets.

Consequently, computing an query QAL under a given domain description DAL will

be intractable. We investigate the computational issues related to language AL. By

33
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examining proper conditions, we identify two subclasses of AL domains, for which

their logic program translation will always be locally stratified and call-consistent

respectively. In this way, any query under these types of domains can be evaluated in

polynomial time. We also present two case studies to illustrate how to use language

AL to specify the security policy and make authorization decisions.

2.1 Syntax, Concepts, and Examples

2.1.1 Syntax

The authorization language AL consists of entities, atoms, thresholds, statements,

rules and queries. The formal BNF syntax of AL [95] is given in Figure 2.1. We

explain the syntax in detail as follows.

Entities

In distributed systems, entities include subjects who are authorizers owning or con-

trolling resources and requesters making requests, objects which are resources and

services provided by authorizers, and privileges which are actions executed on ob-

jects.

We define three types of constant entities, subject, object and privilege. Each

constant entity is an element of three disjoint constant symbol sets, SUB, OBJ, and

PRIV, where SUB is the set of subject constants, OBJ the set of object constants,

and PRIV the set of privilege constants. The constant entity must start with a

lower-case letter.

Correspondingly each variable entity is an element of three disjoint variable sym-

bol sets, Vsub, Vobj, and Vpriv that range over the sets SUB, OBJ , and PRIV

respectively. The variable entities are prefixed with an upper-case letter.

In the BNF of AL, 〈sub-con〉, 〈obj-con〉, 〈priv-con〉, 〈sub-var〉, 〈obj-var〉, and

〈priv-var〉 represent elements of the sets SUB, OBJ , PRIV , Vsub, Vobj, and Vpriv

respectively.

In language AL, we provide a special subject, local. It is the local authorizer

which makes the authorization decision based on local policy and credentials from
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〈rule〉 ::= 〈head-stmt〉 [ if [ 〈list-of -body-stmt〉 ]

[ with absence 〈list-of -body-stmt〉 ] ] (1)

〈head-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |

〈auth-stmt-head〉 | 〈delegate-stmt-head〉 (2)

〈list-of -body-stmt〉 ::= 〈body-stmt〉 | 〈body-stmt〉, 〈list-of -body-stmt〉 (3)

〈body-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |

〈auth-stmt-body〉 | 〈delegate-stmt-body〉 (4)

〈relation-stmt〉 ::= “local” says 〈relation-atom〉 (5)

〈assert-stmt〉 ::= 〈sub〉 asserts 〈assert-atom〉 (6)

〈auth-stmt-body〉 ::= 〈sub〉 grants 〈auth-atom〉 to 〈sub〉 (7)

〈auth-stmt-head〉 ::= 〈sub〉 grants 〈auth-atom〉 to 〈sub-ext-struct〉 (8)

〈delegate-stmt-body〉 ::= 〈sub〉 delegates 〈auth-atom〉 with depth 〈k〉 to 〈sub〉 (9)

〈delegate-stmt-head〉 ::= 〈sub〉 delegates 〈auth-atom〉 with depth 〈k〉 to 〈sub-struct〉 (10)

〈relation-atom〉 ::= below(〈obj〉, 〈obj〉) | below(〈priv〉, 〈priv〉 |

neq(〈entity〉, 〈entity〉) | eq(〈entity〉, 〈entity〉) (11)

〈assert-atom〉 ::= exp(〈entity-set〉) (12)

〈auth-atom〉 ::= right(〈sign〉, 〈priv〉, 〈obj〉) (13)

〈obj〉 ::= 〈obj-con〉 | 〈obj-var〉 (14)

〈priv〉 ::= 〈priv-con〉 | 〈priv-var〉 (15)

〈sub〉 ::= 〈sub-con〉 | 〈sub-var〉 (16)

〈sub-set〉 ::= 〈sub-con〉 | 〈sub-con〉, 〈sub-set〉 (17)

〈sub-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉 (18)

〈sub-ext-set〉 ::= 〈dth〉 | 〈dth〉, 〈sub-ext-set〉 (19)

〈sub-ext-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉 | “[”〈sub-ext-set〉“]” (20)

〈entity〉 ::= 〈sub〉 | 〈obj〉 | 〈priv〉 (21)

〈entity-set〉 ::= 〈entity〉 | 〈entity〉, 〈entity-set〉 (22)

〈sign〉 ::= + | − | ¤ (23)

〈k〉 ::= 〈natural-number〉 (24)

〈threshold〉 ::= 〈sth〉 | 〈dth〉 (25)

〈sth〉 ::= sthd(〈k〉, “[”〈sub-set〉“]”) (26)

〈dth〉 ::= dthd(〈k〉, 〈sub-var〉, 〈assert-stmt〉) (27)

〈query〉 ::= 〈sub〉 requests (+, 〈priv〉, 〈obj〉) |

“[”〈sub-set〉“]” requests (+, 〈priv〉, 〈obj〉) (28)

Figure 2.1: BNF for the Authorization Language AL
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trusted subjects.

Atoms

An atom is a function symbol with n arguments − generally n = 1, 2, or 3 − that are

constant or variable entities, to express a logical relationship between them. There

are three types of atoms:

1. 〈relation-atom〉. An atom in this type is 2-ary and expresses the relationship

of two entities. We provide three relation atoms, eq, neq, and below. The

atoms eq and neq denote that two entities are equal and not equal, and the

atom below denotes the hierarchy structure for object and privilege entities. In

most realistic systems, the data information is organized using hierarchy struc-

ture, such as file systems and object oriented database system. For example,

below(ftp, pub-services) denotes that ftp is one of pub-services.

2. 〈assert-atom〉. This type of atoms, denoted by exp (a1, . . . , an), is an ap-

plication dependant function symbol with n arguments, that are constant or

variable entities, to state the property of entities or the relationship among

them. The assert-atom is a kind of flexible atoms in language AL. For ex-

ample, isaTutor(alice) denotes that alice is a tutor.

3. 〈auth-atom〉. The auth-atom is of the form,

right(〈sign〉, 〈priv〉, 〈obj〉),

in which sign is +, -, or ✷. It states positive(+) privilege, negative(-) privilege,

or both(✷) of them. When an auth atom is used in a delegation statement, the

sign is ✷ to denote both positive and negative authorizations. For example,

right(+, update, students) indicates the positive update privilege on students.

Statements

There are four types of statements, relation statement, assert statement, auth state-

ment, and delegation statement. Only the local authorizer can issue the relation

statement to denote structured resources and privileges. Language AL provides
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body and head forms for auth statements and delegation statements.

Threshold

There are two types of threshold structures, static threshold and dynamic threshold.

The static threshold structure is of the form,

sthd(k, [s1, s2, . . . , sn]),

where k is the threshold value, [s1, s2, . . . , sn] is the static threshold pool, and we

require k ≤ n and si 6= sj for 1 ≤ i, j ≤ n (i 6= j). This structure states that k

subjects will be chosen from the threshold pool.

The dynamic threshold structure is of the form:

dthd (k, S, 〈sub〉 asserts exp(. . . , S, . . .)),

where S is a subject variable and we require that S is an argument in the assert

atom exp(. . . , S, . . .). This structure denotes that k subjects who satisfy the assert

statement will be chosen.

Rules

The rule is of the form,

〈head-stmt〉 if 〈list-of -body-stmt〉,

with absence 〈list-of -body-stmt〉.

The basic unit of a rule is a statement. Let h0 be a head statement and bi a body

statement, then a rule is expressed as follows:

h0 if b1, b2, . . . , bm, with absence bm+1, . . . , bn.

In language AL, a rule is a local authorization policy or a credential from other

subjects and the issuer of the rule is the issuer of the head statement h0.

Query

Language AL supports single subject queries and group subject queries. They are

of the forms:
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sub requests right(+, p, o), and

[s1, s2, . . . , sn] requests right(+, p, o).

Through a group subject query, we implement separation of duty which is an

important security concept. It ensures that a critical task cannot be carried out by

a single subject. If we grant an authorization to a group subject, we permit it only

when all subjects in the group request the authorization at the same time.

2.1.2 Examples of AL

In this subsection, we present some examples to show the expressive power of AL.

Structured resources

In the file system of a server in a university, there is a directory postgraduate which

has one subdirectory for each postgraduate student, such as alice, bob, and so on.

local says below(alice, postgraduate).

local says below(bob, postgraduate).

Structured privileges

In a database system, there are a group of privileges allrights including insert, delete,

and select.

local says below(insert, allrights).

local says below(delete, allrights).

local says below(select, allrights).

Partial delegation and authorization

A firewall system protects the allServices, including ssh, ftp, and http. The admin-

istrator permits ipA to access all the services except ssh and delegates this right to

ipB with two steps.

local delegates right(✷, access, X) with depth 2 to ipB if

local says below(X, allServices), local says neq(X, ssh).

local grants right(+, access, X) to ipA if

local says below(X, allServices), local says neq(X, ssh).
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Separation of duty

A company chooses to have multiparty control for emergency key recovery. If a

key needs to be recovered, three persons are required to present their individual

PINs. They are from different departments, managerA, a member of management,

auditorB, an individual from auditing department, and techC, a technician from

IT department.

local grants right(+, recovery, k) to [ managerA, auditorB, techC ].

Negative authorization

In a firewall system, the administrator sa does not permit ipB to access the ftp

services.

sa grants right(−, access, ftp) to ipB.

Nonmonotonic reasoning

In a firewall system, the administrator sa permits a person to access the mysql service

if the human resource manager hrM asserts that the person is a staff and is not on

holiday.

sa grants right(+, access, mysql) to X if

hrM asserts isStaff (X), with absence hrM asserts onHoliday(X).

2.2 Semantics

2.2.1 Basic Idea

AL is a high level language to specify authorization policies, in which the basic units

are rules as described in Figure 2.1. We use a domain description to specify a policy

base.

Definition 2.1 A domain description DAL of language AL is a finite set of rules.

Definition 2.2 The size of a domain description DAL, denoted as |DAL|, is the

number of rules in DAL.
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We present an ASP based language LAns for the semantics of AL. The semantics

of language AL is defined by translating the domain description DAL of AL into a

logic program P of LAns. We define function TransRules(DAL) to translate a domain

description DAL into a program P , and function TransRules(QAL) to translate query

QAL into program Π and ground literals ϕ(+) and ϕ(−). ϕ(+) is used for the positive

privilege and ϕ(−) for the negative privilege. A query is solved based on P, Π and

ϕ via Smodels. We give the formal semantics for language AL as follows.

Definition 2.3 Given a domain description DAL and a query QAL of language AL,

we define functions TransRules(DAL) = P and TransQuery(QAL) = 〈Π, ϕ(+), ϕ(−)〉.

We say that query QAL is permitted, denied, or unknown by the domain description

DAL iff (P ∪Π) |= ϕ(+), (P ∪Π) |= ϕ(−), or (P ∪Π) 6|= ϕ(+) and (P ∪Π) 6|= ϕ(−)

respectively.1

2.2.2 The language LAns

LAns is an ASP based language with answer set semantics. A program of LAns

can be computed by Smodels. In this subsection, we first present the alphabet for

language LAns, and then give the propagation rules, authorization rules, and conflict

resolution and decision rules in LAns.

The language alphabet of LAns

1. Entity Sort:

There are three types of constant entities, subject, object, and privilege. The

subject entity sort includes group subject entities introduced in the translation

to state a set of subjects. All the constant entities start with a lowercase letter.

Accordingly, there are three disjoint variable sets, the sets of subject variables,

object variables, and privilege variables that range over the constant entities

respectively. The variable entities begin with a uppercase letter.

1Functions TransRules and TransQuery will be specified in section 2.2.3.
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2. Function symbols:

right(sign, priv, obj), where sign is +, −, or ✷, priv is of privilege sort, and

obj is of object sort.

exp(a1, . . . , an), where ai is an entity sort, and exp is an application dependant

assertion atom name. For example, isDoctorOf(alice, tom) states that alice

is the doctor for tom.

In Smodels, both functions are symbolic functions, each of which just defines

a new constant as an argument for the predicates in a program. We define

functions to combine the related arguments together to express a right or an

assertion which are parameters for predicates auth, delegate, and assert. After

the rules in the program are grounded, there are no variables in both kinds

of functions and they are just ordinary constant arguments for the related

predicates.

max(t1, . . . , tn), where each ti (i = 1, 2, . . . , n) is an integer. The function

returns the biggest integer among t1, t2, . . . , tn.

min(t1, . . . , tn), where each ti (i = 1, 2, . . . , n) is an integer. The function

returns the smallest integer among t1, t2, . . . , tn
2.

3. Predicate symbols:

below(arg1, arg2), where arg1 and arg2 are of the same entity sort to state

partial order relationship in a hierarchy structure. For example, below(read,

write) means the privilege read is dominated by write.

assert(issuer, exp(a1, . . . , an)), where issuer is of subject sort and exp is an

application dependant function of n arguments that are of entity sort.

auth(issuer, grantee, right(sign, priv, obj), step), where issuer and grantee

are both of subject entity sort, and step is a natural number or variable which

means how many steps the right goes through from issuer to grantee.

delegate(issuer, delegatee,right(sign, priv, obj), depth, step), where issuer

2Because Smodels does not provide max and min functions, we have extended Smodels by
adding them in it.
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and delegatee are of subject entity sorts, and depth and step are natural num-

bers or variables. depth states how far the right can be delegated further. step

states how many steps the delegation has gone through.

req(sub, right(+, priv, obj)), where sub is of subject entity sort. It states that

the sub requests the right(+, priv, obj).

grant(sub, right(sign, priv, obj)), where sub is of subject entity sort. It states

that the right(sign, priv, obj) is granted to sub.

For the group subject query, we present predicate ggrant and match.

ggrant(sub, right(sign, priv, obj)), where sub is one of subject group entities

introduced during the translation process. It states that the right(sign, priv, obj)

is granted to a set of subjects.

match(sub, right(sign, priv, obj)), where sub is one of subject group entities

introduced during the translation process. It states that subjects requesting

the right are exactly those who are authorized.

We also introduce some predicates for authorization and conflict resolving

rules.

exist pos(sub, right(+, priv, obj)), where sub is of subject entity sort. It

states that there exists at least a positive privilege on obj for sub.

pos far(sub, right(+, priv, obj), step), where sub is of subject entity sort. It

states that there is at least one negative authorization right(−, priv, obj) for

sub which has less steps than the positive authorization right(+, priv, obj)

with step for sub. For example, if both of auth(local, s, right(+, read, file), 4)

and auth(local, s, right(−, read, file), 3) exist, we can get pos far(s,right(+,

read, file), 4).

exist neg(sub, right(−, priv, obj)), where sub is of subject entity sort. It

states that there exists at least a negative privilege on obj for sub.

neg far(sub, right(−, priv, obj), step), where sub is of subject entity sort. It

is similar with pos far(sub,right(+, priv, obj), step).
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Propagation rules

We need propagation rules because in most real world situations, the work to assign

the authorization to all resources is burdensome and not necessary. The security

officer prefers to assign them partially and propagate them to all resources based on

propagation policy. In LAns, we have propagation rules based on the relationships

between objects or privileges as follows.

below(A1, A3) ← below(A1, A2), below(A2, A3) (2.1)

Rule (2.1) is for the structured data propagation.

Authorization rules

Using negation as failure, if there is only positive authorization and no negative

authorization, we will conclude the positive authorization; if there is no positive

authorization, we will conclude the negative authorization. The following is our

authorization rules.

exist pos(X, right(+, P, O)) ← auth(local,X, right(+, P, O), T ). (2.2)

exist neg(X, right(−, P,O)) ← auth(local, X, right(−, P, O), T ). (2.3)

Rules (2.2) and (2.3) state that there are the positive or negative authorizations

in the system respectively.

grant(X, right(+, access, O)) ←

auth(local,X, right(+, P,O), T ),

not exist neg(X, right(−, P,O)). (2.4)

Rule (2.4) makes the positive authorization decision for the single subject request

if there is at least a positive authorization and not any negative authorization in the

system.

grant(X, right(−, P, O)) ← not exist pos(X, right(+, P, O)). (2.5)
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Rule (2.5) makes the negative authorization decision for the single subject request

if there is not any positive authorization, no matter whether there is a negative

authorization or not.

ggrant(L, right(+, P, O)) ←

auth(local, L, right(+, P,O), T ),

match(L, right(+, P, O)),

not exist neg(L, right(−, P,O)). (2.6)

Rule (2.6) makes the positive authorization decision for the group subject request

if there is at lease a positive authorization and not any negative authorization in

the system, and the requesters satisfy the group subject requirement.

ggrant(L, right(−, P,O)) ← not exist pos(L, right(+, P,O)). (2.7)

Rule (2.7) makes the negative authorization decision for the group subject re-

quest if no positive authorization exists.

Conflict resolution and decision rules

In an access control system, when both positive and negative authorizations are

permitted, conflicts might occur. Most existing approaches deal with conflicts in

the following ways: (1) No conflict policy. It relies on the security administrator to

write the consistent authorization rules. If there are conflicts, errors happen [97]. (2)

A fixed-conflict resolving policy based on relative authorization or specification. As

pointed out in [80], this kind of policies include negative (positive)-take-precedence,

strong and weak authorization, specific-take-precedence, and time-take-precedence.

Moreover, Agudo et. al. [3] and Ruan et. al. [80, 81], have proposed graph-based

schemes to deal with distributed authorization, in which they presented predecessor-

take-precedence and strict-predecessor-take-precedence, respectively. (3) Flexible

scheme to support multiple conflict resolving policies [58]. Logic-based approaches

for distributed authorization can easily specify different policies that coexist in the

same framework.
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Since our work is logic-based approach for distributed authorization, it is feasible

to integrate different conflict resolving policies into our approach. Comparing with

the weighted-graph based approach [3, 81], we should mention that, it is easy to

extend our language to handle weighted authorization because Smodels already pro-

vided weight literal representation in logic programming. In this chapter, we choose

trust-take-precedence policy, similar to the work in [80], to deal with conflicts. We

consider delegation as an action and assign the step for each authorization which is

decided by the delegation step. All the authorizations arise from local originally.

The subject local has the highest priority for the authorizations, while the subjects

who directly receive the delegable authorizations from local have the second high-

est priority, and so on. The step number in the predicate auth(. . .) states how far

the authorization is away from local which reflects the trust extent. The smaller

the authorization step, the more trustable on this authorization. For this reason,

the authorization with the smallest step overrides other ones. If the conflict occurs

with the same priority, we deny the request. To find the smallest step authoriza-

tion, we introduce a predicate pos far(X, right(+, P, O), T ) which is true in the

program if there exists a negative authorization which has a smaller step than the

positive authorization, auth(local, right(+, P, O), T ). In other words, the positive

authorization is far from local at least than one corresponding negative authoriza-

tion. Symmetrically, we have the predicate neg far(X, right(−, P, O), T ). They are

showed as follows:

pos far(X, right(+, P,O), T1) ←

auth(local,X, right(+, P,O), T1),

auth(local,X, right(−, P, O), T2),

T1 > T2. (2.8)

neg far(X, right(−, P, O), T1) ←

auth(local,X, right(−, P, O), T1),

auth(local,X, right(+, P,O), T2),
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T1 > T2. (2.9)

For a positive authorization A, auth(local, S, right(+, P, O), T ), if a correspond-

ing predicate pos far(. . .) exists, we can say that there is at least one corresponding

negative authorization which has higher priority than A based on Rule (2.8). If

there does not exist a corresponding predicate pos far(. . .), the priority of A is

higher or at lease not lower than that of any corresponding negative authorization.

We have the similar explanation for Rule (2.9). Therefore we have the following

conflict resolution rules:

grant(X, right(+, P, O)) ←

auth(local, X, right(−, P, O), T2),

neg far(X, right(−, P, O), T2),

auth(local, X, right(+, P, O), T1),

not pos far(X, right(+, P,O), T1). (2.10)

grant(X, right(−, P, O)) ←

auth(local, X, right(+, P, O), T1),

auth(local, X, right(−, P, O), T ),

not neg far(X, right(−, P, O), T ). (2.11)

Rule (2.10) states we make the positive decision if for the positive authorization

there does not exist a predicate pos far(. . .) and for any corresponding negative

authorization, there exists a predicate neg far(. . .). Rule (2.11) states we make the

negative decision if the priority of the negative authorization is higher or at least

not lower than that of any corresponding positive authorization.

Rules (2.10) and (2.11) are for the single subject request. Using the same ap-

proach, we provide the conflict resolution rules for the group subject request. In

Rules (2.12) and (2.13), the predicate match(. . .) states that the group of the re-
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questers satisfies the authorization’s requirement.

ggrant(L, right(+, P,O)) ←

auth(local, L, right(−, P, O), T2),

neg far(L, right(−, P, O), T2),

match(L, right(+, P,O)),

auth(local, L, right(+, P, O), T1),

not pos far(L, right(+, P,O), T1). (2.12)

ggrant(L, right(−, P, O)) ←

auth(local, L, right(+, P,O), T1),

auth(local, L, right(−, P, O), T2),

match(L, right(−, P, O)),

not neg far(L, right(−, P, O), T2). (2.13)

2.2.3 Transformation from AL to LAns

As shown earlier, a rule rD in the domain description DAL is of the following form

h0 if b1, b2, . . . , bm, with absence bm+1, . . . , bn. (2.14)

where h0 is the head statement denoted by head(rD) and bi’s are body statements

denoted by body(rD). We call the set of statements {b1, b2, . . . , bm} positive body

statements, denoted by pos(rD), and the set of statements {bm+1, bm+2, . . . , bn}

negative body statements, denoted by neg(rD). If there is no confusion in the context,

we use positive statements and negative statements to express them respectively. In

(2.14), if m = 0 and n = 0, the rule simply becomes h0 and is called a fact.

In the next subsections we provide translation functions for DAL and QAL. The

function TansRules(DAL) translates the rules in the domain description DAL into

a logic program P . We divide the process into three phases, body translation(see

subsection 2.2.3), head translation(see subsection 2.2.3), and adding related rules
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(see subsections 2.2.2). For a query in language AL, we provide TransQuery(QAL)

to translate it into a program Π and ground literals ϕ(+) and ϕ(−).

Function symbols, assert-atom and auth-atom in language AL, correspond to

functions exp(a1, . . . , an) and right(sign, priv, obj) in language LAns. In our trans-

lation, if there is no confusion in the context, we use exp and right to denote them

in both languages.

Body transformation

In language AL, there are four types of body statements, relation statement, assert

statement, delegation statement, and auth statement. As delegation statement and

auth statement have similar structures, we present their transformations together.

For each rule rD, its body statement bi is one of the following cases.

1. Relation statement:

local says below(arg1, arg2)

local says neq(arg1, arg2)

local says eq(arg1, arg2)

Replace them respectively in program P using:

below(arg1, arg2), (2.15)

neq(arg1, arg2), (2.16)

eq(arg1, arg2), (2.17)

where arg1 and arg2 in below(arg1, arg2) are of object or privilege entity sort;

arg1 and arg2 in neg(arg1, arg2) and eq(arg1, arg2) are of the same type entity

sort to specify whether they are equal or not. In Smodels, neq and eq are

internal functions and work as constraints for the variables in the rules.

2. Assert statement:

issuer asserts exp.
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Replace it in program P using

assert(issuer, exp), (2.18)

where issuer is a subject constant or variable, and exp is an assert atom.

3. Delegation body statement or auth body statement:

issuer delegates right with depth k to delegatee,

issuer grants right to grantee.

The issuer is a subject constant or variable, we replace the statements in

program P using

delegate(issuer, delegatee, right, k, T ), and (2.19)

auth(issuer, grantee, right, T ), (2.20)

where k is the delegation depth and T is a step variable that indicates how

many steps the delegation/right has gone through from issuer to delegatee/grantee.

We translate the positive statements as above, and for the negative body state-

ments, we do the same translation and add not before them.

Head transformation

In language AL, there are four types of head statements, relation statement, assert

statement, delegation statement, and auth statement. If the head statement h0 is a

relation statement or an assert statement, the translations are the same as the body

statements. We adopt rules (2.15) and (2.18) to translate them respectively. Note

that the relation statements for atoms neq and eq are used as variable constraints

in body statements and we do not use them as head statements. Here we present

the translation for auth head statement, and delegation head statement.

1. Auth head statement:
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issuer grants right to grantee.

If grantee is a subject constant or variable, we replace it by

auth(issuer, grantee, right(Sn, P,O), 1), (2.21)

where 1 is the authorization step to state that the right is granted from issuer

to grantee directly.

We further add the following propagation rules into program P:

auth(issuer, grantee, right(Sn, P1, O), 1) ←

auth(issuer, grantee, right(Sn, P, O), 1), below(P1, P ). (2.22)

auth(issuer, grantee, right(Sn, P, O1), 1) ←

auth(issuer, grantee, right(Sn, P, O), 1), below(O1, O). (2.23)

If grantee is a complex structure, subject set, threshold, or subject extent set,

we introduce group subject entity lnew to denote the subjects in the complex

subject structures, and replace its head in program P as follows

auth(issuer, lnew, right(Sn, P, O), 1). (2.24)

We also need to add the propagation rules similar to rules (2.22) and (2.23)

and the following rules for the complex structures.

case 1: lnew is [s1, . . . , sn]

match(lnew, right) ←

auth(issuer, lnew, right, 1),

n{req(s1, right), . . . , req(sn, right)}n.

case 2: lnew is sthd(k, [s1, s2, . . . , sn])

match(lnew, right) ←
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auth(issuer, lnew, right, 1),

k{req(s1, right), . . . , req(sn, right)}k.

case 3: lnew is dthd (k, S, sub asserts exp(S) )

match(lnew, right) ←

auth(issuer, lnew, right, 1),

k{req(S, right) : assert(sub, exp(S)) }k.

case 4: lnew is [dthd (k1, S1, s1 asserts exp1(S1) ), . . . ,

dthd (kn, Sn, sn asserts expn(Sn) )].

match(lnew, right) ←

auth(issuer, lnew, right, 1),

k1{req(S1, right) : assert(s1, exp1(S1))}k1,
...

kn{req(Sn, right) : assert(sn, expn(Sn))}kn.

2. Delegation head statement:

issuer delegates right with depth k to delegatee.

If delegatee is a subject constant or variable, we replace the statement in

program P using:

delegate(issuer, delegatee, right, k, 1), (2.25)

where k is the delegation depth, and 1 is the delegation step to state that the

issuer delegates the right to delegatee directly.

Moreover, we need to add the following implicit rules in program P:

Prop-delegation rules: Based on the structured resources, the delegation

can be propagated as following rules.

delegate(issuer, delegatee, right(✷, P1, O), k, 1) ←

delegate(issuer, grantee, right(✷, P,O), k, 1),

below(P1, P ). (2.26)
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delegate(issuer, delegatee, right(✷, P, O1), k, 1) ←

delegate(issuer, delegatee, right(✷, P, O), k, 1),

below(O1, O). (2.27)

Auth-delegation rule: When the issuer delegates a right to the delegatee,

the issuer will agree with the delegatee to grant the right to other subjects

within the delegation depth. The authorization step increases by 1.

auth(issuer, S, right(Sn, P,O), T + 1) ←

delegate(issuer, delegatee, right(✷, P, O), k, 1),

auth(delegatee, S, right(Sn, P, O), T ). (2.28)

Delegation-chain rule: The delegation can be further delegated within the

delegation depth.

delegate(issuer, S, right(✷, P,O),min(k-Step, Dep), 1 + T ) ←

delegate(issuer, delegatee, right(✷, P, O), k, 1),

delegate(delegatee, S, right(✷, P, O), Dep, T ), T < k. (2.29)

Self-delegation rule: The delegatee can delegate the right to himself/herself

within k depth.

delegate(delegatee, delegatee, right,Dep, 1) ←

delegate(issuer, delegatee, right, k, 1), Dep ≤ k. (2.30)

Weak-delegation rule: If there is a delegation with k steps, we can get the

delegation with steps less than k.

delegate(issuer, delegatee, right, Dep, 1) ←

delegate(issuer, delegatee, right, k, 1), Dep < k. (2.31)
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If delegatee is a complex structure, subject set, static threshold, or dynamic

threshold, we introduce a new group subject lnew to state the subjects in the

complex structures, and replace the statement in program P using

delegate(issuer, lnew, right, k, 1).

We also need to add additional rules. Because there are similar rules for

different complex delegatee structure, here we just present the rules for the

subject set structure as follows:

Prop-delegation rules: Based on the structured resources, the delegation

can be propagated similar to those for a single delegatee.

delegate(issuer, lnew, right(✷, P1, O), k, 1) ←

delegate(issuer, lnew, right(✷, P,O), k, 1), below(P1, P ).

delegate(issuer, lnew, right(✷, P, O1), k, 1) ←

auth(issuer, lnew, right(✷, P,O), k, 1), below(O1, O).

Auth-delegation rule: If an issuer delegates a right to a group subject, and

all the members in the group authorize this right to a subject, the issuer agrees

with this authorization. The new authorization step is 1 plus the biggest one

among the group authorizations because the trust for the new authorization

is less than anyone among the group authorizations.

auth(issuer, S, right, T + 1) ←

delegate(issuer, lnew, right, k, 1),

auth(s1, S, right, T1),
...

auth(sn, S, right, Tn),

T = max(T1, . . . , Tn).

Delegation-chain rule: If an issuer delegates a right to a group subject,

and all the members in the group further delegate this right to a subject, the

issuer agrees with this re-delegation. The new delegation depth is the smallest

one among k minus stepi and Depi and the new delegation step is 1 plus the

biggest one among the group delegations.
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delegate(issuer, S, right, T1, T2 + 1) ←

delegate(issuer, lnew, right, k, 1),

delegate(s1, S, right, Dep1, Step1),
...

delegate(sn, S, right, Depn, Stepn),

T1 = min(k-Step1, . . . , k-Stepn, Dep1, . . . , Depn),

T2 = max(Step1, . . . , Stepn),

T1 > 0.

Query Transformation

In language AL, there are two kinds of queries, single subject queries and group

subject queries. We present the function TransQuery(QAL) for both of them and

this function returns program Π and ground literals ϕ(+) and ϕ(−).

If QAL is a single subject query,

s requests right(+, p, o),

TransQuery returns program Π and ground literals ϕ(+) and ϕ(−) as follows re-

spectively,

{req(s, right(+, p, o))},

grant(s, right(+, p, o)), and

grant(s, right(−, p, o)).

If QAL is a group subject query,

[s1, s2, . . . , sn] requests right(+, p, o),

TransQuery returns program Π and ground literals ϕ(+) and ϕ(−) as follows re-

spectively,

{req( si, right(+, p, o)) | i = 1, . . . , n },

ggrant(l, right(+, p, o)), and

ggrant(l, right(−, p, o)),

where l is a group subject entity to state the set of subjects, [s1, . . . , sn].
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2.3 Computational Analysis

In this section, we study basic computational properties of language AL. From

Definition 2.3, we can see that given a domain description DAL and a query QAL

(see Figure 2.1 for the syntax of a query), there are three steps to answer this

query: (1) transfer DAL and QAL to a logic program T ; (2) compute the answer

sets of T ; (3) check whether grant(s, right(sn, p, o)) or ggrant(l, right(sn, p, o)) is

in all answer sets of T . Step 1 is achieved through two transformation functions:

TransRules(DAL) = P and TransQuery(QAL) = 〈Π, ϕ(+), ϕ(−)〉. That is, T =

P ∪ Π. For step 2, we provide function stable(T ) which returns all answer sets of

program T . Step 3 is just a simple checking that can be done in linear time. So

the main computational cost for our approach is on Steps 1 and 2. The following

proposition presents the complexity result for achieving Step 1.

Proposition 2.1 Let DAL be a domain description of language AL and QAL a

query. Then TranRules(DAL) can be computed in time O(|DAL|) and TransQuery(QAL)

can be computed in time O(|QAL|)( here |DAL| is the size of DAL and |QAL| is the

length of QAL.).

Proof. From the transformation process, it is clear that TransQuery(QAL) entirely

depends on the query formula’s length. So it can be obtained in linear time in terms

of QAL’s size. On the other hand, rule transformation includes body transformation

and head transformation. After body transformation, the number of rules does

not change. So |Pbody| = |DAL|. During the head transformation, for the complex

structures in the auth head statement and delegation head statement, |Phead| =

c|DAL|, where c is a constant number. So we conclude that |Phead| = O(|DAL|). ✷

Now we consider the computation of Step 2. For stable(T ), we use Smodels to

compute the answer sets of logic programs. It is well known that deciding whether a

program has an answer set is NP-complete [9]. Consequently, Smodels usually needs

exponential time to compute a program’s answer sets. Therefore, it is important

to identify proper subclasses of the authorization domains where queries can be

answered in polynomial time. In the following section, we will define two subclasses

of language AL in which queries can be computed in polynomial time.
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The domain description of language AL includes finite rules and the basic unit

of a rule is a statement. We have four types of statements, relation statement, assert

statement, delegation statement, and auth statement. To simplify our investigation,

we consider each statement as a predicate with n terms, p(t1, t2, . . . , tn) in which

p states the statement type, and tis are terms to state the variable parts in the

statement. The four types of statements have the following forms,

RelStmt(issuer, relAtomName, atomArg1, atomArg2)

AssertStmt(issuer, assertAtomName, atomArg1, . . . , atomArgn)

DelegationStmt(issuer, receiver, step, priv, obj)

AuthStmt(issuer, receiver, sign, priv, obj)

For instance, we denote a relation statement, “local says below(alice, postgraduate)”

using predicate form, RelStmt(local, below, alice, postgraduate). In such predicate

presentation, each term has a type which can be subject, subject structure, object,

privilege, sign, integer, relation atom name, or assert atom name. Subject structures

are special terms and have four types: subject set, subject static threshold, subject

dynamic threshold and subject extended dynamic threshold. In the subject set

[s1, s2, . . . , sn] and the subject static threshold sthd(k, [s1, s2, . . . , sn]), there exists a

static subject pool [s1, s2, . . . , sn]. Each si is a member of the static subject pool. In a

subject dynamic threshold or subject extended dynamic threshold, there is a dynamic

subject pool. Each constant subject in the domain of the application system may be

a member of the dynamic subject pool.

Definition 2.4 Term t1, and t2 are compatible, denoted by t1 ≃ t2, if t1 and t2 are

the same type terms, and one of the following conditions holds:

1. t1 and t2 are constant terms with the same name;

2. at least one of t1 and t2 is a variable term; or

3. t1 is a subject constant, t2 is a subject structure, and t1 is a member of t2.

For example, if term t1 is a subject alice, t2 is a subject variable S, t3 is a static

threshold sthd(2, [bob, carol, david]), and t4 is a dynamic threshold dthd(3, S, hrM

asserts isAStaff (S)), we say t1 ≃ t2, t1 ≃ t4, t2 ≃ t3, and t2 ≃ t4.
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Definition 2.5 Two statements st1 and st2 are compatible, denoted by st1 ≃ st2,

if st1 and st2 have the predicate forms st′1 and st′2 respectively, and

1. st′1 and st′2 have the same type predicates,

2. all the corresponding terms of st′1 and st′2 are compatible.

From the above definitions, it is easy to see that a statement is compatible to

itself.

Definition 2.6 Let DAL be a domain description of language AL and rp and rq be

two rules in D. We define a set S(rp) of statements with respect to rp as follows:

S0 = {head(rp)};

Si = Si−1 ∪ {head(r) | head(r′) ≃ s where s ∈ pos(r) and

r′ are those rules such that head(r′) ∈ Si−1};

S(rp) =
⋃∞

i=1 Si.

We say that rq is defeasible through rp in DAL if and only if neg(rq) ∩
c S(rp) 6= ∅ 3.

Intuitively, if rq is defeasible through rp in DAL, then there exists a sequence

of rules r1, r2, . . . , rl, . . . such that head(rp) occurs in pos(r1), head(ri) occurs in

pos(ri+1) for all i = 1, . . ., and for some k, head(rk) occurs in neg(rq). Under this

condition, it is clear that by triggering rule rp in DAL, it is possible to defeat rule rq

if rules r1, . . . , rk are triggered as well. As a special case that S(rp) = {head(rp)},

rq is defeasible through rp iff head(rp) ∈ neg(rq).

Definition 2.7 Given a domain description DAL, we define its defeasible graph

DG = 〈V,E〉, where V is the set of rules ri in DAL as the vertices and E the set of

〈ri, rj〉 which is a directed edge to denote rj is defeasible through ri.

Consider a simple example. Suppose a, b, c, . . . are statements , and a′, b′, c′, . . .

are their corresponding compatible statements in language AL, and we have the

following domain description DAL:

3∩c is to get a compatible joint set of two statement sets. Formally, A ∩c B = {sti|sti ∈
A and sti ∈ B or ∃stj , stj ∈ B, si ≃ sj}. See Section 2.2.3 for definitions of head(r), pos(r) and
neg(r) in language AL.
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Figure 2.2: The defeasible graph of the domain description DAL

r1 : b if a.

r2 : c if b′.

r3 : d if with absence c.

r4 : e if with absence b.

Based on the definitions above, we conclude that rule r3 is defeasible through r1 and

r2, and rule r4 is defeasible through r1. Then we have the defeasible graph in Figure

2.2.

The logic program P with answer set semantics consists of a finite set of rules.

A rule r is expressed as follows:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln.

where each Li(0 ≤ i ≤ n) is a literal. The program P is ground if each rule in P

is ground. Let r be a ground rule of the above form, we use pos(r) to denote the

set of literals in the body of r without negation as failure {L1, . . . , Lm}, neg(r) to

denote the set of literals in the body of r with negation as failure {Lm+1, . . . , Ln},

and body(r) for pos(r) ∪ neg(r). L0 is called the head of the rule, denoted by

head(r). By extending these notations, we use pos(P), neg(P), body(P), and

head(P) to denote the union of corresponding components of all rules in program

P, e.g. body(P) =
⋃

r∈P body(r).

We present the concepts of local stratification and call consistence for extended

logic programs [9, 99].

Definition 2.8 Let P be an extended logic program and Lit be the set of all ground

literals of P.

1. A local stratification for P is a function stratum from Lit to the countable

ordinals.
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2. Given a local stratification stratum, we extend it to ground literals with nega-

tion as failure by setting stratum(not L) = stratum(L) + 1, where L is a

ground literal.

3. A rule L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln in P is locally stratified with

respect to stratum if

stratum(L0) ≥ stratum(Li), where 1 ≤ i ≤ m, and

stratum(L0) > stratum(not Lj), where m + 1 ≤ j ≤ n.

4. P is called locally stratified with respect to stratum if all of its rules are locally

stratified. P is called locally stratified if it is locally stratified with respect to

some local stratification.

Definition 2.9 An extended program is said to be call-consistent if its dependency

graph does not have a cycle with an odd number of negative edges.

Lemma 2.1 Let P1, P2 be two locally stratified logic programs. Then the program

P1 ∪ P2 is locally stratified if head(P2) ∩ body(P1) = ∅.

Proof. Because P1 and P2 are two locally stratified propositional logic programs,

their dependency graphs DP1
and DP2

both do not contain any negative cycles. Now

head(P2) ∩ body(P1) = ∅. We assume P1 ∪ P2 is not locally stratified and its de-

pendency graph DP1∪P2
contains a cycle with at least one negative edge, denoted by

〈a1, a2, . . . , a
−
i−1, ai, . . . , an, a1〉, in which, ais are atoms and there are edges between

two conjoint atoms. We use a−
i−1 to denote that the edge from ai−1 to ai is negative.

Other edges are positive.

From the above condition, there are the following rules in the program P1 ∪ P2:

r1 : a2 ← . . . , a1, . . .

r2 : a3 ← . . . , a2, . . .

· · ·

ri−1 : ai ← . . . , not ai−1, . . .

· · ·

rn−1 : an ← . . . , an−1, . . .

rn : a1 ← . . . , an, . . .
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In the above rules, at lease one is from P1. Without loss of generality, we as-

sume r1 is in P1, rn should be in P1 also, because a1 = head(rn), a1 ∈ body(r1)

and head(P2) ∩ body(P1) = ∅. For the same reason, we conclude that all of

rn−1, rn−2, . . . , r2 should be in P1. This implies that P1 is not locally stratified.

The contradiction happens. So we prove that if P1 and P2 are two locally stratified

logic programs and head(P2) ∩ body(P1) = ∅, then P1 ∪ P2 is locally stratified too.

✷

Lemma 2.2 Let P1, P2 be two call consistent logic programs. Then the program

P1 ∪ P2 is call consistent if head(P2) ∩ body(P1) = ∅.

Proof. The dependency graphs of P1 and P2 do not have a cycle with an odd

number of negative edges because P1 and P2 are call consistent. Now we assume

head(P2)∩ body(P1) = ∅. Suppose P1 ∪P2 is not call consistent and its dependency

graph has a cycle with an odd number of negative edges. We can construct an atom

sequence 〈a1, a2, . . . , an, a1〉 to denote a cycle with an odd number of negative edges,

where ai’s are atoms and the sequence denotes that there are positive or negative

edges to connect the atoms one by one. We get the following rules in P1 ∪ P2:

r1 : a2 ← . . . , [not]4 a1, . . .

r2 : a3 ← . . . , [not] a2, . . .
...

ri−1 : ai ← . . . , [not] ai+1, . . .
...

rn−1 : an ← . . . , [not] an−1, . . .

rn : a1 ← . . . , [not] an, . . .

In the above rules, at least one is from P1. Without loss of generality, we assume

r1 is in P1. Because head(P2) ∩ body(P1) = ∅, rn should be in P1 as well. For the

same reason, we conclude that all of rn−1, rn−2, . . . , r2 should be in P1. This implies

that P1 is not a call consistent program. The contradiction happens. This proves

our result. ✷

4[not] means that “not” is an option to denote that the following atom is positive or negative.
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Lemma 2.3 Let DAL be a domain description and P the translated logic program

corresponding to DAL in language LAns. If the defeasible graph DG of DAL does not

have a cycle, then P is locally stratified.

Proof. The semantics of language AL is to translate DAL into a logic program P.

The process includes three steps: (a) translate rules in DAL into logic program rules

and obtain the logic program P ′
1; (b) get P1 = P ′

1 ∪ {r}, where r is a propagation

rule with the form of Rule (2.1).

The basic unit of rules in DAL is a statement which has a corespondent predicate

in logic program. From the translation process (refer to section 2.2.3), we have the

following observation:

Observation: If the defeasible graph of DAL does not have a cycle, then

the dependency graph of program P ′
1 does not have a negative cycle. So

program P ′
1 is locally stratified.

We first show the correctness of this observation. From Definition 2.7 for de-

feasible graph, it is clear that there is a directed edge 〈ri, rj〉 between two different

nodes ri, rj if rule rj in DAL is defeasible through ri. This implies in the dependency

graph of program P ′
1, that there will be a path with a negative label marking on

some edge from an atom occurring in rule ri’s head to an atom occurring in rule

rj’s negative body, and vice versa. This follows that if the defeasible graph of DAL

does not contain a cycle, then the dependency graph of program P ′
1 does not have

a negative cycle. From the well known result about dependency graph [9], we know

that program P ′
1 is locally stratified. This proves our observation.

Now consider P1 which is P ′
1 plus the propagation rule:

below(A1, A3) ← below(A1, A2), below(A2, A3).

Because in the domain description, the relation statements related to below(. . .)

are just facts about resource relationship and as conditions for authorization rules,

the program P1 is also locally stratified.

From the observation of authorization rules and conflict resolving rules in section

2.2.2 and section 2.2.2, obviously P2 is locally stratified and head(P2)∩body(P1) = ∅.
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From Lemma 2.1, we conclude that the logic program P = P1∪P2 is locally stratified.

✷

Lemma 2.4 Let DAL be a domain description and P the translated logic program

in language LAns. If the defeasible graph DG of DAL does not have a cycle with an

odd number edges, then P is call consistent.

Proof. The Lemma 2.4 can be proved in a similar way of that in Lemma 2.3. ✷

Theorem 2.1 Let DAL be a domain description. If its defeasible graph DG does

not have a cycle, then DAL has a unique model that can be computed in polynomial

time.

Proof. From [9], a locally stratified logic program has the unique answer set and

can be computed in a polynomial time. Based on Lemma 2.3 and the definition of

semantics of domain description DAL, the result is approved. ✷

Theorem 2.2 Let DAL be a domain description. If its defeasible graph DG does

not have a cycle with an odd number edges, then DAL has at lease one model that

can be computed in polynomial time.

Proof. From [9], a call consistent logic program has at lease one answer set and

can be computed in polynomial time. Based on Lemma 2.4 and the definition of

semantics of domain description DAL, the result is proved. ✷

2.4 Two Case Studies

In this section we present two specific authorization scenarios to demonstrate the

application of language AL.

Scenario 2.1 A company chooses to have multiparty control for emergency key

recovery. If a key needs to be recovered, three persons are required to present

their individual PINs. They must be from different departments: a member of

management, an individual from auditing, and a technician from IT department.
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The system trusts the manager of Human Resource to identify the staff of the

company. The domain description DAL for this scenario consists of the following

rules represented by using language AL.

local grants right(+, recover, key) to

[ dthd(1, X, hrM asserts isAManager(X)),

dthd(1, Y, hrM asserts isAnAuditor(Y )),

dthd(1, Z, hrM asserts isATech(Z)) ].

hrM asserts isAManager(alice).

hrM asserts isAnAuditor(bob).

hrM asserts isAnAuditor(carol).

hrM asserts isATech(david).

We translate it into the language LAns,

auth(local, l, right(+, recovery, key), 1).

match(l, right(+, recovery, key)) ←

auth(local, l, right(+, recovery, key), 1),

1{req(X, right(+, recovery, key)) :

assert(hrM, isAManager(X))}1,

1{req(Y, right(+, recovery, key)) :

assert(hrM, isAnAuditor(Y ))}1,

1{req(Z, right(+, recovery, key)) :

assert(hrM, isATech(Z))}1.

assert(hrM, isAManager(alice)).

assert(hrM, isAnAuditor(bob)).

assert(hrM, isAnAuditor(carol)).

assert(hrM, isATech(david)).

In this scenario, the program P consists of the above translated rules, and those

authorization rules specified in section 2.2.2. If Alice, Bob, and David make a request

to recover a key together, that is,

[alice, bob, david] requests right(+, recovery, key).
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After translation, we get program Π,

{ req(alice, right(+, recovery, key)).

req(bob, right(+, recovery, key)).

req(david, right(+, recovery, key)). }

and the ground literal ϕ(+) is,

ggrant(l, right(+, recovery, key)).

where l is a group subject entity to represent the set of subjects, [alice, bob, david].

Then program P ∪Π (Refer to the Appendix A for complete program) has only

one answer set in which ggrant(l, right(+, recovery, key)) is true. We conclude

(P ∪ Π) |= ggrant(l, right(+, recovery, key)). Therefore the request is permitted.

Now if we consider that Alice, Bob, and Carol make the same request, the rule

for match(l, right(+, recovery, key)) can not be satisfied. From the authorization

rules (2.6) and (2.7) in section 2.2.2, the system denies the request from Alice, Bob,

and Carol. A complete ASP program representing this scenario is given in Appendix

A.

Scenario 2.2 A server provides the services including http, ftp, mysql, and smtp.

It sets up a group for them, called services. The server delegates the right of

assigning the services to the security officer so with depth 3. The security officer so

grants the services to staff . The service mysql can not be accessed if the staff is on

holiday. Officer so can get information of staff from the human resource manager

hrM . The policies and credentials are described using language AL as follows.

local says below(http, services).

local says below(ftp, services).

local says below(mysql, services).

local says below(smtp, services).

local delegates right(✷, access, services)

with depth 3 to so.

so grants right(+, access, Y ) to X

if hrM asserts isStaff (X),
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local says below(Y, services), local says neq(Y, mysql).

so grants right(+, access, mysql) to X

if hrM asserts isStaff (X),

with absence hrM asserts onHoliday(X).

hrM asserts isStaff (alice).

hrM asserts isStaff (bob).

hrM asserts onHoliday(alice).

For this scenario, we give the complete LAns program in Appendix A. Through

Smodels, we get one and only one answer set. In the following, we list parts of the

answer set:

auth(local, alice, right(+, access, http), 2)

auth(so, alice, right(+, access, http), 1)

delegate(local, so, right(+, access, http), 3, 1)

grant(alice, right(+, access, http))

grant(alice, right(−, access, mysql))

The predicates auth(. . .) are helpful for us to find the authorization path. We

can find that the authorization passes from local to so, and then from so to alice.

In many applications, such authorization path and related delegation chain play an

essential role to identify the validity of requests [36, 67].

2.5 Summary

In this chapter, we developed an authorization language AL to specify distributed

authorization with delegation. We used Answer Set Programming as a foundational

basis for its semantics and computation. As we have showed, AL has a rich expres-

sive power representing not only nonmonotonic policies and positive and negative

authorizations, but also structured resources and privileges, partial authorization

and delegation, and separation of duty policies.

As we indicated earlier, our formulation has implementation advantages because
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of the recent development of Answer Set Programming technology in AI community5,

where many existing approaches do not have. Both scenarios in section 2.4 have been

fully implemented through Answer Set Programming.

We also investigated the computational issue related to language AL. It is

well known that deciding whether an extended logic program has an answer set

is NP-complete [9], which means that in general the answer set computation is

intractable. So in practic we will need an exponential algorithm to compute a

program’s answer sets. As the semantics of AL is defined based on answer set (stable

model), consequently, computing an query QAL under a given domain description

DAL will be intractable. In our formulation, we dealt with this problem in two

ways. One is to employ the state of the art technology of Answer Set Programming

to develop optimization strategies to improve the computation process for query

evaluation. We applied lparse to ground and simplify the logic programs [74], which

is a default front-end to Smodels. The other way is to identify more general tractable

classes of AL domains by applying some computational results in logic programs.

We considered that when a logic program is locally stratified or call-consistent, then

this program must have an answer set, and such answer set can be computed in

polynomial time. By examining proper conditions, we identified two classes of AL

domains, for which their LAns translation will always be locally stratified or call-

consistent. In this way, any query under those types of domains can be evaluated

in polynomial time.

5Please refer to http://www.tcs.hut.fi/Software/smodels/index.html



Chapter 3

An Access Control System for

XML documents Considering

Delegation

In this chapter, we present a fine-grained access control system for XML documents

considering delegation based on AL introduced in Chapter 2. We define an XML-

based language XPolicy to encode policies. The policy semantics is provided through

the semantics of language AL. In our system, we use Xindice − a native XML

Database system to store access control policies and XML resources. It is convenient

using native database system to manage XML-based information. When we retrieve

an XML document from the database, we get document content, as well as its DOM

tree structure directly which has been done by Xindice. Otherwise, we have to

provide the process of retrieving and updating an XML document ourselves. We first

introduce the related work and present preliminary knowledge including concepts

in XML, the XML DOM tree and Xindice. Then, we give detailed concepts in our

system which include how to specify subjects, objects and policies, and how to define

policy semantics, as well as discussions of privilege, propagation options and conflict

resolutions. We also provide the execution process and some implementation issues.

3.1 Related Work

XML (Extensible Markup Language), a markup language promoted by the World

Wide Web Consortium (W3C), is the de facto standard language for the represen-

67
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tation and exchange of information on the Internet. Comparing to HTML, which

was defined using only a small and basic part of SGML (Standard Generalized

Markup Language: ISO 8879), XML is a sophisticated subset of SGML, designed

to describe data using arbitrary tags. As its name implies, extensibility is a key

feature of XML, with which users or applications are free to declare and use their

own tags and attributes. Moreover, XML removes the complexity of SGML. Due to

its advantages, XML is now widely accepted in the Web community, and available

applications exploiting this standard include OFX (open financial exchange) [31]

for describing financial transactions and OSD (Open Software Distribution) [92] for

software distribution on the Net.

As more and more information is made available in XML format, both in corpo-

rate Intranets and on the global Net, concerns are being raised by developers and

end-users about XML security problems. The advancement of public-key crypto-

graph has remedied most of the security problems in communications. In the XML

area commercial products are becoming available providing security features such as

digital signatures and element-wise encryption to transactions involving XML data.

Recently, the problem of designing a sophisticated access control mechanism for

XML information was addressed and several projects [18, 37, 38, 39, 79] have been

carried out for supporting authorization-based access control to XML information

in the Web.

The access control model proposed in [37, 38, 39] sets access rights to elements of

XML documents and DTD using DOM trees, and controls users’ access to XML data

according to the information of the access rights. Figure 3.1 shows access control

process using the access control model. In this access control model, the access right

information is specified in XAS (XML Access Sheets). If a user requests access to

an XML document, the system executes a task as shown in the lower part of Figure

3.1. First, it parses the XML document to get the DOM tree. Then it sets nodes in

the DOM tree with a sign of “+” (allow) or “−” (deny) based on XAS of the XML

document and its DTD. Such a task of setting access rights on the nodes of a DOM

tree is called labelling. From the labelled DOM tree, finally, nodes with “−” sign

are removed and those with “+” sign are shown to the user in XML format. The
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document that the user sees is the same as a view in that it is parts of the entire

document. Parts of an XML document, whose nodes have been removed from the

DOM tree, may be invalid in DTD. To solve this problem, a loosening process is

necessary as shown in the upper part of Figure 3.1. The process sets all elements

and attributes in DTD to be optional so that existing DTD be preserved even if

nodes are removed from the DOM tree. A user only can view parts of the XML

document that he/she is given a right to access. This is the way how data security

(confidentiality) is guaranteed.

loose
DTD

DOM tree

XAS

DTD

XAS

document
XML

parsing

transformation

unparsing

document
XML

transformed

−

+

++

+

+ +
labelling

DOM labelled tree

loosening

Figure 3.1: Access control process

Bertino and Ferrari [18] defined a formal access control model for XML docu-

ments, which extended the previous model proposed in Damiani et al. [39]. The

model in [39] only provides the read access privilege. By contrast, Bertino and Fer-

rari [18] provided a number of specialized access modes for browsing and authoring

privileges, which allow the system administrator to authorize a user to read the

information in an element and/or to navigate through its links, or to modify/delete

the content of an element/attribute. Moreover, the access control system in Bertino

and Ferrari [18] supports a secure massive distribution of XML documents among

large user communities.

Wu et al. [79] proposed an access control model which supports delegable au-

thorization rules for XML documents and fine-grained access control. This model

follows the basic idea in [39] and added delegation authorizations. The delegable
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authorization is represented as a 6-ary tuple of the form:

D = 〈grantee, object, authorization type,

access right, grantor, propagation type〉,

which reads that grantee is granted by grantor the access right on object with

authorization type and propagation type. Here,

grantor ∈ S,

grantee ∈ S,

object ∈ O,

authorization type ∈ {+,−, ∗},

access right ∈ {browsing, updating}, and

propagation type ∈ {NO PROP, UP CASCADE, DOWN CASCADE},

where S is a set of subjects; O is an XML document/DTD, or an element of them;

authorization type can be +,−, or ∗ to denote positive, negative and delegable

administrative privilege respectively; propagation type can be one of NO PROP ,

UP CASCADE, and DOWN CASCADE to denote no propagation, propagation

to parent elements, and propagation to sub-elements respectively. The concept of

the model is illustrated in Figure 3.2.

XML/DTD Transformed
TreeXAS

DOM Tree Tree

Delegable Authorizations

Labelled

Figure 3.2: XML delegable access control process

Due to a complex structure in an ordinary file, it is difficult to restrict access to

only parts of the file or to assign access rights over parts of the file. Thus access

control has to be made against the entire file. However, XML has a tree-shaped

hierarchical structure and an XML document is composed of several elements [37].

Each element corresponds to a node in the tree. Because each node represents a
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part of XML data, access control to a part of data is possible in XML by assigning

access rights over elements, which is called the fine-grained access control for XML.

Moreover, in distribution environments, delegable authorizations in access control

system are desirable as introduced in Chapter 2. The work of Damiani et al.[37, 38,

39] implemented a fine-grained access control system for XML resources based on

XML DOM tree, which provided both positive and negative authorizations, labelled

each node in the DOM tree using “+” or “−” according to positive or negative

authorization over the node, and dealt with conflicts based on conflict resolution

policies in transformation phase. The work of Bertino et al.[18] also implemented

fine-grained access control for XML supporting the formulation of high-level access

control policies that have taken into account both user characteristics and document

contents and structures, as well as the secure document distribution. However, the

above two approaches did not have delegation features. The approach proposed by

Wu et al. [79] encapsuled delegable authorization rules for XML documents that

allow flexible data granularity. However, the subject specification in this approach

only supported users and groups. Moreover, the definitions of the General Access

Rule and the Delegable Rule are simple. Due to the simplicity of syntax, the previous

approaches have limits in expressing authorization policies. They could not support

complex subject structures and delegation with depth control. More importantly,

they only have simple authorizations and do not support conditional policy rules.

Let us consider the following scenario: in hospital, the patients personal information

is saved as XML documents in the databases; the nurses are forbidden to read and

update the patients personal information; the nurse in the department of surgery

can be delegated the permission of browsing by the doctor to access the information

on the patient if the doctor is in charge of the patient. The scenario includes the

complex delegation and conditional policy rules that can not be specified by the

previous approaches.
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3.2 Preliminary

3.2.1 Basic Concepts of XML

XML [10] is a markup language for describing semi-structured information. An

XML document is composed of a sequence of nested elements, each delimited either

by a pair of start and end tags (e.g., 〈recipe〉 and 〈/recipe〉) or by an empty tag. An

XML document is well-formed if it obeys the syntax of XML (e.g., nonempty tags

must be properly nested; each nonempty start tag must correspond to an end tag).

A well-formed document is valid if it conforms to a proper document type definition

(DTD). A DTD is a file (external, included directly in the XML document, or both)

that contains a formal definition of a particular type of XML documents.

A DTD may include declarations for elements, attributes, entities, and notations.

Elements are the most important components of an XML document. Element dec-

larations in the DTD specify the names of elements and their content. The content

specification may coincide with Empty, Any, or with a group of one or more subele-

ments/groups. Empty means that the element has no content, whereas Any means

that the element may have any content. Groups can be sequences or a choice of

subelements and/or subgroups. Sequences of elements are separated by a comma

“,”, and choices are separated by a vertical bar “|”. Declarations of sequence and

choices of subelements also describe the subelements cardinality; with a notation

inspired by extended BNF grammars, “*” indicates zero or more occurrences, “+”

indicates one or more occurrences, “?” indicates zero or one occurrence, and no

label indicates exactly one occurrence. Attributes represent properties of elements.

Attribute declarations specify the attributes of each element, indicating their name,

type, and, possibly, default value. Attributes can be marked as required, implied, or

fixed. Attributes marked as required must have an explicit value for each occurrence

of the elements with which they are associated. Attributes marked as implied are

optional. Attributes marked as fixed have a fixed value indicated at the time of

their definition. Entities are used to include text and/or binary data in a document

and can be internal or external. Internal entities are used to introduce special char-

acters in the document or as an alias for some frequently used text. External entities
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are external files containing either text or binary data. Notation declarations spec-

ify how to manage the binary entities. Entities and notations are essential in the

description of the physical structure of an XML document, but are not considered

in our thesis, where we concentrate the analysis on the XML logical description.

Figure 3.3 illustrates an XML document example1 describing the order informa-

tion in a factory. XML documents that are valid with respect to a DTD obey the

structure defined by the DTD. Intuitively, each DTD is a schema and XML docu-

ments that are valid according to that DTD are instances of that schema. Figure 3.4

is the DTD of the XML document in Figure 3.3. Note that since elements defined

in a DTD may appear in an XML document zero, one or many times, according

to their cardinality constraints, the structure defined by the DTD is not rigid; two

distinct documents of the same DTD may differ in the number and structure of

elements.

In the following, we present the formal model of XML based on [18, 37, 40]. A

DTD can be represented as a labelled tree containing a node for each attribute and

element in the DTD. There is an arc between elements and each element/attribute

belonging to them, labelled with the cardinality of the relationship. Elements are

represented as circles and attributes as squares. Let Σ be a set of DTD element and

attribute identifiers and Label in {∗, +, ?}. A DTD is formally defined as:

Definition 3.1 (DTD). A document type definition (DTD) is a tuple t = (Vt, v0, Et, φEt
),

where:

• Vt = V e
t ∪ V a

t is a set of nodes where V e
t s denote elements and V a

t s denote

attributes in the DTD. Each v ∈ Vt has an associated identifier idv ∈ Σ;

• v0 is the node representing the whole DTD element (called DTD root);

• Et ⊆ Vt×Vt is a set of edges, where e ∈ Et representing the element-subelement

or element-attribute relationship;

• φEt
: Et → Label is the edge labelling function.

1This example is extracted from the website, http://publib.boulder.ibm.com/infocenter/db2luw/v8/
index.jsp?topic=/com.ibm.db2.udb.doc/ad/r0008719.htm
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〈?xml version = “1.0”?〉
〈Order key = “1”〉

〈Customer〉
〈Name〉American Motors〈/Name〉
〈Email〉parts@am.com〈/Email〉

〈/Customer〉
〈Part color = “black”〉

〈key〉68〈/key〉
〈Quantity〉36〈/Quantity〉
〈ExtendedPrice〉34850.16〈/ExtendedPrice〉
〈Tax〉6.000000e-02〈/Tax〉
〈Shipment〉

〈ShipDate〉1998-08-19〈/ShipDate〉
〈ShipMode〉BOAT 〈/ShipMode〉

〈/Shipment〉
〈Shipment〉

〈ShipDate〉1998-08-19〈/ShipDate〉
〈ShipMode〉AIR〈/ShipMode〉

〈/Shipment〉
〈/Part〉
〈Part color = “red”〉

〈key〉128〈/key〉
〈Quantity〉28〈/Quantity〉
〈ExtendedPrice〉38000.00〈/ExtendedPrice〉
〈Tax〉7.000000e-02〈/Tax〉
〈Shipment〉

〈ShipDate〉1998-12-30〈/ShipDate〉
〈ShipMode〉TRUCK〈/ShipMode〉

〈/Shipment〉
〈/Part〉

〈/Order〉

Figure 3.3: An Example of XML Documents

〈!DOCTY PE Order [
〈!ELEMENT Order (Customer, Part+)〉
〈!ATTLIST Order key CDATA#REQUIRED〉
〈!ELEMENT Customer (Name, Email)〉
〈!ELEMENT Name (#PCDATA)〉
〈!ELEMENT Email (#PCDATA)〉
〈!ELEMENT Part (key, Quantity, ExtendedPrice, Tax, Shipment+)〉
〈!ELEMENT key (#PCDATA)〉
〈!ELEMENT Quantity (#PCDATA)〉
〈!ELEMENT ExtendedPrice (#PCDATA)〉
〈!ELEMENT Tax (#PCDATA)〉
〈!ATTLIST Part color CDATA #REQUIRED〉
〈!ELEMENT Shipment (ShipDate, ShipMode)〉
〈!ELEMENT ShipDate (#PCDATA)〉
〈!ELEMENT ShipMode (#PCDATA)〉
]〉

Figure 3.4: DTD of the XML document in Figure 3.3
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Order

key Quantity ExtendedPrice Tax Shipment

ShipModeShipDate

PartCustomer

EmailName

color

key

+

+

Figure 3.5: Graph representation of DTD in Figure 3.4

Figure 3.5 shows the graph representation of the DTD in Figure 3.4. Nodes rep-

resenting elements are denoted by rectangles, whereas nodes representing attributes

are denoted by circles.

Each XML document is modelled by a tree with nodes for each element, attribute

and value in the document, and with arcs between each element and each of its sub-

elements/attributes/values and between each attribute and each of its value(s), in

which the arcs between each element/attribute and its value(s) have arrows from the

elment/attribute to its value(s). Let Σ be a set of element and attribute identifiers,

and V alue be a set of element/attribute values. An XML document can be formally

defined as follows:

Definition 3.2 (XML document). An XML document is a triple d = (Vd, v0, Ed),

where:

• Vd = V e
d ∪ V a

d ∪ V u
d is a set of nodes representing elements, attributes and

values respectively. Each v ∈ V e
d ∪ V a

d has an associated identifier in Σ, and

each v ∈ V u
d is a value in V alue;

• v0 is the node representing the whole XML document (called document root);

• Ed ⊆ Vd × Vd is a set of edges, where e ∈ Ed representing the element-

subelement/attribute/value or attribute-value relationship;

Figure 3.6 shows the graph representation of the XML document in Figure 3.3,

in which nodes representing elements are denoted by rectangles, whereas nodes

representing attributes are denoted by circles.
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Order

Customer

EmailName

key

Part color

key

Quantity

ExtendedPrice

Tax

Part color

key

Quantity

ExtendedPrice

Tax

Shipment ShipDate

ShipMode

Shipment ShipDate

ShipMode

Shipment ShipDate

ShipMode

American Motors parts@am.com

1

black

68

36

34850.16

6.000000e−02

1998−08−19

BOAT

1998−08−19

AIR

TRUCK

1998−12−30

7.000000e−02

38000.00

28

128

red

Figure 3.6: Graph representation of the XML document in Figure 3.3

3.2.2 XML DOM Tree Structure

The Document Object Model (DOM) is a recognized W3C standard for platform-

and language-neutral dynamic access and update of the content, structure, and

style of XML documents. It provides a standard set of objects for representing

documents, a standard model of how these objects can be combined and a standard

set of interfaces for accessing and manipulating them.

The basic construct of an XML document is the element and the attribute. Ele-

ments may be nested at any depth and contain other elements. An XML document

can be represented by a tree structure. Nodes of the tree have different types (ele-

ments or attributes). Each element/attribute in XML is represented as a node in a

DOM tree.

3.2.3 Xindice − A Native XML Database System

The Native XML Databases [26] are designed especially to store XML documents.

Like other databases, they support features like transactions, security, multiple-user

access, programmatic APIs, query languages, and so on. The only difference from

other databases is that their internal model is based on XML and not other models,

such as the relational model. The term “native XML database” first gained promi-

nence in the marketing campaign for Tamino, a native XML database from Software
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AG. We present its definition developed by members of the XML:DB mailing list as

follows.

A native XML database:

- defines a logical model for an XML document − as opposed to the data in

that document − and stores and retrieves documents according to that model.

At a minimum, the model must include elements, attributes, PCDATA, and

document order. Examples of such models are the XPath data model, the

XML infoset, and the models implied by the DOM and the events in SAX 1.0.

- has an XML document as its fundamental unit of (logical) storage, just as a

relational database has a row in a table as the fundamental unit of (logical)

storage.

- is not required to have any particular underlying physical storage model.

For example, it can be built on a relational, hierarchical, or object-oriented

databases, or use a proprietary storage format such as indexed, compressed

files.

Xindice [98] is an Open Source Native XML Database System maintained by the

Apache organization.

The Xindice server is designed to store collections of XML documents. Collec-

tions can be arranged in a hierarchy similar to that of a typical UNIX or Windows

file system. In Xindice the data store is rooted in a database instance that can

also be used as a document collection. This database instance can then contain any

number of child collections. In a default install of Xindice the database instance is

called “db” and all collection paths will begin with “/db”. It is possible to rename

the database instance if desired though it is not necessary to do so. Collections are

referenced in a similar manner to how you would work with an ordinary hierarchical

file system.

Xindice currently supports XPath as a query language. In many applications

XPath is only applied at the document level but in Xindice XPath queries can be

executed at either the document level or the collection level. This means that a query

can be run against multiple documents and the result set will contain all matching
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nodes from all documents in the collection. The Xindice server also supports the

creation of indexes on XML documents to speed up commonly used XPath queries.

We present Xindice’s feature summary as follows:

- Document Collections: Documents are stored in collections that can be queried

as a whole. We can create collections that contain just documents of the same

type or we can create a collection to store all our documents together.

- XPath Query Engine: To query the Document Collections we use XPath as de-

fined by the W3C. This provides a reasonably flexible mechanism for querying

documents by navigating and restricting the result tree that is returned.

- XML Indexing: In order to improve the performance of queries over large

numbers of documents we can define indexes on element and attribute values.

This can dramatically speed up query response time.

- XML:DB XUpdate Implementation: When we store XML in the database we

are able to change that data without retrieving the entire document. XUpdate

is the mechanism to do server side updates of the data. It is an XML based

language for specifying XML modifications and allows those modifications to

be applied to entire document collections as well as single documents.

- Java XML:DB API Implementation: For Java programmers Xindice provides

an implementation of the XML:DB API. This API is intended to bring porta-

bility to XML database applications just as JDBC has done for relational

databases. Most applications developed for Xindice will use the XML:DB

API.

- Command Line Management Tools: To aid the administrator, Xindice pro-

vides a full suite of command line driven management tools. Just about ev-

erything you can do through the XML:DB API can also be done from the

command line.

- Modular Architecture: The Xindice server is constructed in a very modular

manner. This makes it easy to add and remove components to tailor the server

to a particular environment or to embed it into another application.
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3.3 Concepts and Process in Our Access Control

System

XML is widely used in Web communities. Access control policies for XML resources

must cope with a dynamic subject population and support a wide spectrum of

protection granularity, ranging from a set of documents to specific elements within

a document.

In our system, access control policies include local authorization rules and creden-

tials issued by third parties which will be specified by the language AL. Language

AL supports both single subject requests and group subject requests. Because the

group subject request is only suitable for some specific situations which need special

hardware architectures and software systems, for the simplicity and practicality of

the system implementation, we only consider single subject requests in our system.

Consequently, we need authoring to a single subject, instead of a complex subject

structure. Although we do not authorize a privilege to a group of subjects, we still

support delegating a privilege to a group of subjects , from which if all the subjects

in the group authorize the privilege to the same subject, we can conclude the subject

holds the privilege.

Based on the above restrictions, we obtain a fragment of language AL, denoted as

AL∗. The complete syntax of AL∗ is presented in Appendix B. Our system defines

an XML-based language XPolicy , the XML format of language AL∗ to specify access

control policies. Actually, XPolicy is a DTD. We can encode the policy using an

XML document valid with respect to XPolicy . In this section, we illustrate how

to specify subjects, objects, and policies using XPolicy . We also discuss privilege,

propagation option and conflict resolution issues in our system and give the definition

of policy semantics. Finally, we present the execution process of our system.

3.3.1 The XML-based Policy Language XPolicy

We use a policy base to specify a set of authorization policies including local autho-

rization policies and credentials from third parties, which is equivalent to a domain

description of AL∗ but in XML format. Figure 3.7 shows XPolicy , a DTD which
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is the XML format of language AL∗ with the same expressive power as AL∗. We

write a policy base using an XML document according to XPolicy .

The root element in an XML policy file is policybase which includes one or more

than one subelements, rules. A rule consists of a head statement, positive statements

and negative statements which have the following form in language AL∗:

h if a1, a2, . . . , am with absence b1, b2, . . . , bn.

where if n = 0 and m = 0, the rule is a fact. A rule has a head statement and has

no body statement or one or more than one body statements. In the XML policy

file, the element rule has subelements, head, posbody and negbody. The number of

posbody and negbody can be zero, one or more than one. We also present the element

and related attributes definitions for statements, subject structures, and object in

language XPolicy which are described in detail in the following sections.

3.3.2 Subject Specification

In our system, subjects can be authorizers or requesters. Public keys are viewed as

subjects to be authorized and the authorization can be delegated to third parties.

Our system supports four subject structures: subject, subject set, static threshold,

and dynamic threshold. We demonstrate them using the following examples:

Example 3.1 subject structures:

subject: a, b, c, d, e, . . .

subject set: [a, b, c, d, e]

static threshold: sthd(2, [a, b, c, d, e])

dynamic threshold: dthd(2, X, a asserts isACashier(X)) ✷

In previous approaches [18, 39, 79], their systems described subjects using fixed

hierarchy structures. However, our system not only has the complex subject struc-

tures, but also can specify subjects and relationships among them more flexibly using

assert statements. For instance, assert statements can specify that a subject is a

member of a group, has certain features, or has a relationship with other subjects.

Generally, assert statements are used as conditions to restrict authorizations as

showed in the following example.
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〈!DOCTY PE policybase [
〈!ELEMENT policybase (rule+) 〉
〈!ELEMENT rule (head, posbody∗, negbody∗)〉
〈!ELEMENT head (stmt-type, (rel-stmt | assert-stmt | del-stmt-head | auth-stmt))〉
〈!ELEMENT posbody (stmt-type, (rel-stmt | assert-stmt | del-stmt-body | auth-stmt))〉
〈!ELEMENT negbody (stmt-type, (rel-stmt | assert-stmt | del-stmt-body | auth-stmt))〉
〈!ELEMENT stmt-type (#PCDATA)〉
〈!ELEMENT rel-stmt (issuer, relT itle, arg+)〉
〈!ELEMENT assert-stmt (issuer, assertT itle, arg+)〉
〈!ELEMENT del-stmt-head (issuer, priv, obj, step, (sub | sub-set | sthd | dthd))〉
〈!ELEMENT del-stmt-body (issuer, priv, obj, step, sub〉
〈!ELEMENT auth-stmt (issuer, sign, priv, obj, sub〉
〈!ELEMENT issuer (#PCDATA)〉
〈!ELEMENT relT itle (#PCDATA)〉
〈!ELEMENT arg (argT itle, arg-type)〉
〈!ELEMENT argT itle (#PCDATA) 〉
〈!ELEMENT arg-type (#PCDATA) 〉
〈!ELEMENT assertT itle (#PCDATA)〉
〈!ELEMENT priv (#PCDATA)〉
〈!ELEMENT obj (#PCDATA)〉
〈!ELEMENT step (#PCDATA)〉
〈!ELEMENT sign (+ | − | �)〉
〈!ELEMENT sub (#PCDATA)〉
〈!ELEMENT sub-set (sub+)〉
〈!ELEMENT sthd (k, sub-set)〉
〈!ELEMENT k (#PCDATA)〉
〈!ELEMENT dthd (k, sub, assert-stmt)〉
〈!ATTLIST rule

hnum CDATA#REQUIRED
posbnum CDATA#REQUIRED
negbnum CDATA#REQUIRED〉

〈!ATTLIST relT itle argNum CDATA#REQUIRED)〉
〈!ATTLIST assertT itle argNum CDATA#REQUIRED)〉
〈!ATTLIST posbody id CDATA#REQUIRED〉
〈!ATTLIST negbody id CDATA#REQUIRED〉
〈!ATTLIST arg id CDATA#REQUIRED〉
〈!ATTLIST subset subNum CDATA#REQUIRED〉
〈!ATTLIST sub id CDATA〉
〈!ATTLIST dthd id CDATA#REQUIRED〉
]〉

Figure 3.7: XPolicy: DTD of a policy base
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Example 3.2 A doctor can read a patient’s document if he is in charge of the

patient in hospital hM .

In this authorization rule, we can use the assert statement, The hospital hM

asserts doctor A is in charge of the patient B, as a condition (as a body statement

in the rule). ✷

In XPolicy , the assert statement is defined as follows:

〈 !ELEMENT assert-stmt(issuer, assertT itle, arg+) 〉

〈 !ELEMENT issuer(#PCDATA) 〉

〈 !ELEMENT assertT itle(#PCDATA) 〉

〈 !ELEMENT arg(argT itle, arg-type) 〉

〈 !ELEMENT argT itle(#PCDATA) 〉

〈 !ELEMENT arg-type(#PCDATA) 〉

〈 !ATTLIST assertT itle argNum CDATA#REQUIRED 〉

〈 !ATTLIST arg id CDATA#REQUIRED 〉

In the XML policy file, we provide the argument type information arg-type which

can be subject or object for assert statements for the simplicity and efficiency of the

system implementation.

We use the above definition to encode the assert statement in Example 3.2:

〈assert-stmt〉

〈issuer〉hA〈/issuer〉

〈assertT itle argNum = 2 〉DoctorOf〈/assertT itle〉

〈arg id = 1〉

〈argT itle〉A〈/argT itle〉

〈arg-type〉subject〈/arg-type〉

〈/arg〉

〈arg id = 2〉

〈argT itle〉B〈/argT itle〉

〈arg-type〉subject〈/arg-type〉
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〈/arg〉

〈/assert-stmt〉

The definitions for subject structures in XPolicy are presented as follows.

〈!ELEMENT sub(#PCDATA)〉

〈!ELEMENT sub-set(sub+)〉

〈!ELEMENT sthd(k, sub-set)〉

〈!ELEMENT dthd(k, sub, assert-stmt)〉

〈!ELEMENT k(#PCDATA)〉

〈!ATTLIST subset subNum CDATA#REQUIRED〉

〈!ATTLIST sub id CDATA〉

〈!ATTLIST dthd id CDATA#REQUIRED〉

We encode subject, subject set, static threshold, and dynamic threshold examples

in Example 3.1 using XPolicy respectively as follows.

• subjects

〈sub〉a〈/sub〉

〈sub〉b〈/sub〉

〈sub〉c〈/sub〉

〈sub〉d〈/sub〉

〈sub〉e〈/sub〉

• subject set

〈sub-set subNum = 5〉

〈sub id = 1〉a〈/sub〉

〈sub id = 2〉b〈/sub〉

〈sub id = 3〉c〈/sub〉

〈sub id = 4〉d〈/sub〉

〈sub id = 5〉e〈/sub〉

〈/sub-set〉

• static threshold

〈sthd〉
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〈k〉2〈/k〉

〈sub-set subNum = 5〉

〈sub id = 1〉a〈/sub〉

〈sub id = 2〉b〈/sub〉

〈sub id = 3〉c〈/sub〉

〈sub id = 4〉d〈/sub〉

〈sub id = 5〉e〈/sub〉

〈/sub-set〉

〈/sthd〉

• dynamic threshold

〈dthd id = 0〉

〈k〉2〈/k〉

〈sub〉X〈/sub〉

〈assert-stmt〉

〈issuer〉a〈/issuer〉

〈assertT itle argNum = 1〉isACashier〈/assertT itle〉

〈arg id = 1〉

〈argT itle〉X〈/argT itle〉

〈arg-type〉subject〈/arg-type〉

〈/arg〉

〈/assert-stmt〉

〈/dthd〉

3.3.3 Object Specification

In our system, access control policies can be specified for a whole DTD or an XML

document. Moreover, policies specified at the DTD level can be applied to XML

documents valid to the DTD.

In the following, we use the term object to denote the DTD/documents or por-

tions of those documents to which a policy applies. The object specification includes

three parts: (1) a document/DTD; (2) the element(s) within the document/DTD;

(3) the attribute(s) within the specified element(s). The first part is required by
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all object specifications. The last two parts are optional. Elements can be denoted

by a set of their identifiers, or by a path from the document/DTD root element to

the nodes representing the element(s). Based on Definitions 3.1 and 3.2, the object

specification is defined as follows:

Definition 3.3 (Object Specification). Let t = (Vt, v0, Et, φEt
) be a DTD and d =

(Vd, v0, Ed) be an instance of t. An object specification is of the form:

doc-spec.Root-spec[.element-spec][.attrs]

where:

- doc-spec is a document name. There is a special doc-spec, 0 which means this

object specification is for the DTD, instead of an XML document.

- Root-spec is a root identifier, idv0
with v0 in t or d.

- element-spec is an element specification for the DTDs or documents which has

the following two forms:

- a set of element identifiers in t or d, that is element-spec=(id1, . . . , idn),

with idi ∈ {idv | v ∈ V e
t \{v0} or v ∈ V e

d \{v0}}.

- a path expression, that is, element-spec = path expr, where path expr is

specified based on the following grammar:

path expr ::= ∗ | tag [ ( [text = n0 [ , attr1 = n1, . . . ] ] ) ]

| path expr.path expr

where * denotes all elements, tag is the identifier of an element in t or d,

“text = n0” denotes the value of the element is n0, and “attr1 = n1”

denotes that the value of attr1 is n1.

- attrs is a set of attributes of the elements in t or d.

Example 3.3 Consider the DTD in Figure 3.4 and the XML document in Fig-

ure 3.3. Suppose the XML document’ name is aOrder. The object specification

examples are presented as follows:
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- 0.Order.Part.key: it denotes the key numbers of Parts in all instances of the

DTD Order.

- 0.Order.Part(color = red).Shipment: it denotes the Shipment elements for all

Parts that have the color red.

- aOrder.Order.{Quantity, ExtendedPrice, ShipMode, ShipDate}: it denotes a

set of objects including quantity, price, and shipment information in the XML

document aOrder.

✷

In language XPolicy , the object is of the form:

〈!ELEMENT obj(#PCDATA)〉

The object specifications in Example 3.3 can be encoded as:

• 〈obj〉0.Order.Part.key〈/obj〉

• 〈obj〉0.Order.Part(color = red).Shipment〈/obj〉

• 〈obj〉aOrder.Order.{Quantity, ExtendedPrice, ShipMode, ShipDate}〈/obj〉

3.3.4 Discussions on Privileges, Propagation and Conflict

Resolution

Privileges involving write operations on XML documents

Currently, our system has been implemented only to support read privilege, since in

practice, most XML applications are read-only. In fact, we can extend our system

to support write privileges including insert, delete and update as follows.

In our system, we label a DOM tree of an XML document with respect to au-

thorizations and make the access control decision based on the pruned DOM tree.

Insert privileges are evaluated by executing the labelling process on the document

with the new node inserted. If the labelling process produces a positive label on

the new node, the insert operation completes successfully, otherwise this operation
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is denied. The delete operation of a node is allowed only if the labelling of the doc-

ument produces a final positive label for the node to be deleted. Update operations

are evaluated by executing the labelling process on both the existing document and

on the new updated document. If the final label associated with the node being

updated is positive in both versions, the update operation is permitted; otherwise it

is rejected. When the XML document is modified, the system must also check the

correctness of the document with respect to the DTD and if the document is not

valid, the write operations must not be allowed. Consider write requests refer to a

set of nodes. A transactional mechanism can be introduced based on the “deferral”

of controls, analogous to the SQL command set constraints deferred that relational

systems offer for the management of constraints. The mechanism is that write oper-

ations are collected in an atomic sequence, and all the checks on the correctness of

the updates are deferred at the end of the sequence. Each single write operation is

checked for permissions and correctness. If a single one is not allowed, the sequence

is invalid and the XML data are rolled back to their original state.

Propagation options

Our system supports authorizations at all levels of granularity, from the DTD to

single elements/attributes within individual documents. Propagation options state

how policies specified at a given level of a DTD/document hierarchy propagate to

other levels. In our system, we add special propagation rules in policy base to choose

different propagation options. There are two options: one is no propagation of the

policy; the other is that the authorizations are propagated to all the direct and

indirect subelements of the elements specified in the policy specification. For the

second option, the authorizations specified on a DTD are propagated to all XML

documents that are instances of the DTD; the authorizations specified on an element

in an XML document are propagated to its attributes and subelements (including

their attributes), which makes authorizations more simple and flexible.

Conflict resolution

Since we support both positive and negative authorizations, conflict authorization

may arise when a subject is granted two contradicted authorizations over the same

object. A proper conflict resolution policy is needed to handle this problem. In
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our system, we adopt the conflict resolution policy described in Chapter 2 that

is a trust-take-precedence policy. As discussed earlier, the authorization must be

first delegated from the local administrator local and therefore the authorization

granted from local can never be overridden by those of other grantors. We can

say that local has the highest priority, while the subjects who directly receive the

delegable authorizations from local have the second highest priorities, and so on.

The priorities of grantors decrease along the delegation path. If the authorizations

with the same priorities have conflicts, we use the negative-take-precedence policy

to solve it.

3.3.5 Policy Specification and Semantics

We specify authorization policies as a policy base which is an XML document valid

with respect to XPolicy presented in Section 3.3.1. Based on components introduced

previously, we use an example to demonstrate the specification of a policy base using

XPolicy .

Example 3.4 A factory fA stores the order information for each customer using

an XML document with respect to the DTD presented in Figure 3.4. For the order

information, fA has the following local authorization policies and credentials from

third parties:

1. fA permits requests to access the customer information in all the orders from

all people except its competitors.

2. fA prohibits its competitors to read any order information.

3. fA delegates the read privilege over orders to customers who made the order

with delegation depth 2.

4. fA asserts that a is a customer.

5. fA asserts that d is a competitor.

6. a grants the read privilege over its Part information to b.

7. a grants the read privilege over its orders to d.
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✷

Using language AL∗, we encode the local policies and credentials into a domain

description DAL∗ , in which each rule specifies the corresponding policy. For instance,

r1 is for policy 1, and so on. In the object specifications, there may be variables,

sets of elements, and/or attribute restricted elements that are not supported by

the semantics of language AL∗. In the next section, we will provide the object

specification process in detail. Here we only focus on the syntax expression.

r1: local grants right(+, read, “0.Order.Customer”) to X if with absence local

asserts isACompetitor(X).

r2: local grants right(−, read, “0.Order”) to X if local asserts isACompetitor(X).

r3: local delegates right(✷, read, “X.Order.Part”)

with depth 2 to “X.Order.Customer”.

r4: local asserts isACustomer(a).

r5: local asserts isACompetitor(d).

r6: a grants right(+, read, “aOrder.Order.Part”) to b.

r7: a grants right(+, read, “aOrder.Order”) to d.

From the definition of XPolicy , we obtain the policy base PB, an XML document

valid with respect to XPolicy as follows. Here we use r1 and r7 to illustrate the

structure of the policy base. The complete XML document for Example 3.4 is

presented in Appendix C.

〈policybase〉

〈rule hnum = 1 posbnum = 0 negbnum = 1〉

〈head〉

〈stmt-type〉auth-stmt〈/stmt-type〉

〈auth-stmt〉

〈issuer〉local〈/issuer〉

〈sign〉p〈/sign〉
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〈priv〉read〈/priv〉

〈obj〉0.Order.Customer〈/obj〉

〈sub〉X〈/sub〉

〈/auth-stmt〉

〈/head〉

〈negbody id = 1〉

〈stmt-type〉assert-stmt〈/stmt-type〉

〈assert-stmt〉

〈issuer〉local〈/issuer〉

〈assertT itle argNum = 1〉isACompetitor〈/assertT itle〉

〈arg id = 1〉

〈argT itle〉X〈/argT itle〉

〈arg-type〉subject〈/arg-type〉

〈/arg〉

〈/assert-stmt〉

〈/negbody〉

〈/rule〉
...

〈rule hnum = 1 posbnum = 0 negbnum = 0〉

〈head〉

〈stmt-type〉auth-stmt〈/stmt-type〉

〈auth-stmt〉

〈issuer〉a〈/issuer〉

〈sign〉p〈/sign〉

〈priv〉read〈/priv〉

〈obj〉aOrder〈/obj〉

〈sub〉d〈/sub〉

〈/auth-stmt〉

〈/head〉

〈/rule〉

〈/policybase〉



§3.3 Concepts and Process in Our Access Control System 91

In our system, we define XPolicy as the language for specifying access control

policies and provide its semantics through language AL∗. We write a policy base

PB, which is an XML document according to XPolicy for specifying a set of DTD-

level and doc-level authorization policies over the XML documents. When a subject

requests to access an XML document, our system returns a view that depends on

authorization policies.2

The semantics of language XPolicy is defined by three steps: (1) transform a

policy base in XPolicy into a logic program through the domain description format

in language AL∗; (2) compute the answer sets of the logic program and generate

authorization results; (3) present the requester’s view based on the authorizations.

To provide the requester’s view, we first parse the XML document and obtain

the DOM Tree of the XML document. At the same time, we get the parent and

child relationships between the elements in the document, parent(n1, n2), where n1

and n2 are elements of the document which are specified according to Definition 3.3.

In XPolicy , we have the object specifications that includes variables, a set of

elements and attribute restricted elements. Before transforming the policy base into

a domain description, we have to process those situations in the object specifications

which are described in detail in Section 3.3.6.

After processing the object specifications, we obtain a domain description DAL∗

from a policy base PB. Similar to the process in Chapter 2, we use function

TransRules(DAL∗) to get a logic program and then add propagation option and con-

flict resolution rules into this program, which is finally a logic program P . Through

SModels, we compute the answer sets of program P , Ans(P), from which we extract

a set of authorizations, {(s, sn, p, n)} based on predicate grant(s, right(sn, p, n)),

where s is a subject, sn is “+” or “-” to denote positive or negative authorizations,

p is the privilege, and n is a node of the document specified using the format of ob-

ject specifications. We define the process using the function, FindAuth(Ans(P)),

which checks the set of answer sets of logic program P and returns a set of 4-ary

2We do not mention the query to an element in an XML document. After we have computed
the view of a requester over an XML document, the query to one of its elements can be responded
with the element and its subelements in this view or will be denied if the element is not in this
view.
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tuples {(s, sn, p, n)}. The view of requesters is generated through labelling the XML

document’s DOM tree using the authorizations. This view is formed by nodes in

the DOM tree that are permitted for the requesters to access. In our system, the

query is that a subject s requests a privilege p over an XML document o, denoted

as Q = (s, p, o). The definition for the semantics of XPolicy is as follows.

Definition 3.4 Given a policy base PB of language XPolicy, and a query Q =

(s, p, o). Let DAL∗(PB) be the equivalent domain description in language AL∗, P =

TransRules(DAL∗(PB)), and AUTH = FindAuth(Ans(P)). We define the result

of a query Q to PB to be Result(PB,Q) = { n | (s, +, p, n) ∈ AUTH & parent(o, n) }.

3.3.6 Execution Process

In this section, we present the mechanism of the system execution. The valid XML

documents and their corresponding policy base which consists of a set of autho-

rization rules setting for the XML documents, are stored in Xindice, a native XML

database. A user requests a whole XML document and the system responses with a

valid XML document only including the information the user is permitted to access

according to the policy base in the requested document.

Our system computes the requester’s view over a valid XML document online.

Its execution phases, showed in Figure 3.8, mainly include five steps: (1) Parsing.

Process the XML documents into a DOM tree and generate the tag and parent-

children relationship library for the elements in the requested XML document. (2)

Policy reasoning. Transform the policy base into a logic program, compute its answer

sets by SModels and generate the authorization results. (3) Labelling. Mark the

elements using the authorization results. (4) Pruning. Remove the nodes with

negative authorizations in the DOM tree. (5)Unparsing. Restore the pruned DOM

tree into an XML document. We present the steps in detail as follows.

1. Parsing

In this step, we transform the XML documents into the DOM tree structure

and obtain tags of the elements and the parent-children information between

elements in them. The XML resources are stored in Xindice database in our
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Figure 3.8: System execution process

system. XML:DB API of Xindice provides XMLResource class to access to

the underlying XML data as either text or a DOM Node. Then we can call

getContentAsDom() to get the XML document or the element as a DOM

Node. After that, we go through the DOM tree, tag the Node and its subNodes

and generate a library for tags and parent-children relationships between them.

In the generated library we store tags and parent-children relationships. Each

element/attribute in the XML document has a tag denoted as (ne, tok), where

ne is a node expression following the definition of object specification in Def-

inition 3.3 and tok is a token for the element/attribute with the form doc-

spec.seqNo in which doc-spec is the XML document’s name and seqNo is an

increasing number to denote the sequence we access the nodes in the DOM

tree. For instance, we present the tags of the elements from the XML docu-

ment illustrated in Figure 3.3.

• The tag of Order: (aOrder.Order, aOrder.0)

• The tag of Customer: (aOrder.Order.Customer, aOrder.1)

• The tag of Part with black color:

(aOrder.Order.Part(color = black), aOrder.2).

The parent-children relationships are a set of binary relations with the form,

parent(tok1, tok2) to denote that tok1 is the parent node of tok2, in which

tok1 and tok2 are tokens. Note that in authorization policies, the text or

attribute value restrictions for an element are optional. However, in a tag,

we will add the text value and all existed attributes’ values for an element.

An object specification in the tag determines one and only one element in the
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XML document, equivalent to a node in its DOM tree. However, an object

specification in authorization policies may define more than one elements of

the XML document.

2. Policy reasoning.

In this step, we first transform a policy base into a domain description, then

transform the domain description into a logic program, and finally compute

the answer sets of the logic program using SModels. The authorizations are

extracted from the answer sets. In this section, we use PB to denote a policy

base and DAL∗ to denote the corresponding domain description.

(a) Transforming a policy base PB into a DAL∗

We divide the rules in PB into two sets: PBO+

and PBO−

. The rules

that have object specifications fall in PBO+

. Other rules are included

in PBO−

. We process them separately. The rules in PB and DAL∗ are

denoted as rPB and rAL∗ respectively.

- For rules in PBO−

:

Each rule rPB in PBO−

is equivalent with a rule rAL∗ and can be

transformed into rAL∗ directly. Then we define a transforming func-

tion, tran pb(PBO−

) = DAL∗

O−

.

- For rules in PBO+

:

The object specification is of the form:

doc-spec.Root-spec[.element-spec][.attrs].

In an object specification, there may be variables and the element-spec

may be a set of elements. A rule rPB in PBO+

is called a ground pol-

icy rule if the object specifications in it do not include variables and

a set of elements. The non-ground policy rules in PBO+

need to be

instantiated first.

In the object specification, we restrict the type of variables only to

doc-spec. Then we ground the variables in it using the values of

doc-spec of the DTD. In a rule rPB, if the element-spec in an object
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Figure 3.9: An example for tags

specification is a set of elements, for each element in the set, we add

a rule in which the element-spec is replaced by the element.

After the instantiation process, we may get a set of rules for each

non-ground rule. So far, all rules in PBO+

are grounded including

DTD-level and doc-level object specifications. According to tags in

the tag library, we replace the doc-level object specifications with

corresponding toks. For the DTD level object specifications, we gen-

erate tags in which the doc-specs are 0 and seqNos for them are

obtained from corresponding element nodes in the doc-level object

specifications. At the same time, we add into the tag library a bi-

nary relation instance(a, b) to denote that the element a in the XML

document is an instance of element b in its DTD.

After the transformation of rules in PBO+

and PBO−

, we obtain

tranToD(PBO+

) and tranToD(PBO−

) respectively. Then we have

DAL∗ = tranToD(PBO+

) ∪ tranToD(PBO−

).

We use the following example to illustrate operations in the tag library.

Example 3.5 The Figure 3.9 (a) shows the simplified DTD in Figure 3.4; The

Figure 3.9 (b) shows the XML document in Figure 3.3.

The tag of the root element in (b) is (aOrder.Order, aOrder.0). Then the tag of

the root element in (a)is (0.Order, 0.0).
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Note that for each element in a DTD, there may be a few elements in an in-

stance of the DTD that are corresponding to it. For instance, the element Part:

in the XML document, there are two Part elements, (aOrder.Order.Part(color =

black), aOrder.2) and (aOrder.Order.Part(color = red), aOrder.3), in which one

has the black color and the other has the red color. The Part element in DTD uses

the seqNo of the first one and therefore we generate the tag (0.Order.Part, 0.2) for

it. We add the tags into the library and replace the DTD object specifications in

the rules using the new generated toks. At the same time, we generate the binary

relation instance(a, b) where a and b are toks from the DTD and XML document

to denote that element a in XML document is the instance of element b in DTD.

In this example, we can obtain instance(aOrder.0, 0.0), instance(aOrder.2, 0.2),

instance(aOrder.3, 0.2), and so on. ✷

(b) Transforming a DAL∗ into a logic program P

A domain description DAL∗ is the subset of DAL. In Chapter 2, we use

a predicate below(. . .) to denote the relationships between objects. In

our access control system for XML resources, we use parent(a, b) and

instance(a, b) to denote the object relationships instead of below. Cor-

respondingly, we record the parent and instance information in the tag

library. We use them to encode the propagation option rules and replace

the corresponding propagation rules in Chapter 2.

In our system, we have two propagation options: one is NO PROP and

the other is DOWN PROP . For the NO PROP , we do not need to

add propagation rules. For the DOWN PROP , the authorizations are

propagated from DTD level to its instances and from an element to its

direct and indirect subelements and attributes. We have the following

rules for the DOWN PROP option.

parent(A,C) ← parent(A,B), parent(B, C).

This rule creates the parent relationships between indirect parent and

child nodes. Then the following four rules are for the authorization and

delegation propagation. They denote that the authorization/delegation
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is propagated from DTD-level to doc-level and from parent nodes to child

nodes respectively.

auth(S1, S2, right(Sn, P,O1), Step) ←

auth(S1, S2, right(Sn, P, O2), Step), instance(O1, O2).

auth(S1, S2, right(Sn, P,O1), Step) ←

auth(S1, S2, right(Sn, P,O2), Step), parent(O2, O1).

delegate(S1, S2, right(✷, P, O1), Dep, Step) ←

delegate(S1, S2, right(✷, P, O2), Dep, Step), instance(O1, O2).

delegate(S1, S2, right(✷, P, O1), Dep, Step) ←

delegate(S1, S2, right(✷, P, O2), Dep, Step), parent(O2, O1).

In our system, the conflict resolution policy following Chapter 2 takes

trust precedent policy. If conflicts happen in the authorizations with the

same priorities, our system takes negative authorization. Then we use the

conflict resolution rules for single subject request described in Chapter

23.

After transforming a DAL∗ into a logic program and adding propagation

and conflict resolution rules, we obtain a logic program P .

(c) Obtain the authorization results

Using SModels, we compute the answer sets of program P in which we ex-

tract the authorization results from the predicate grant(s, right(sn, p, o)).

The authorizations are organized as AUTH = {(s, sn, p, o)}.

3. Labelling.

The goal of this step is to label the DOM Tree according to the authorizations

obtained from the policy reasoning process. Because we have processed the

propagation and conflict resolution in logic programs, the propagation and

conflict issues have been removed from the answer sets. The we do not need

to consider them in labelling process.

3There are conflict resolution rules for both single subject request and group subject request in
Chapter 2. We only choose rules for the single subject request.
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4. Pruning.

After labelling process, we get a tree in which the nodes are labelled using

positive or negative authorizations. For the final authorization decisions, we

should remove the nodes with negative authorizations the accesses to which

are denied. So we need to prune the nodes with negative authorizations from

the DOM Tree.

5. Unparsing.

The final step is to generate a valid XML document in text format. The

XML:DB API provides functions to add a DOM structure document into the

database and retrieve a document in both text and DOM format. We list the

functions in the following:

setContentAsDOM() // for storing a DOM format document.

getContent() // for retrieving a text format document.

getContentAsDom() // for getting a DOM tree format document.

After obtaining the pruned DOM Tree document, we save the DOM tree for-

mat document into the database and then we can get it using text format.

3.4 Implementation Issues

We design the prototype system with the fine-grained access control for XML re-

sources based on language AL∗, which considers the delegation issue in distributed

environments. Our system accepts requests for XML documents. After checking

the authorizations over the XML document and its DTD, the system presents the

contents that are permitted for requesters. In this section, we present the system

architecture, the system components and implementation issues.

3.4.1 System Architecture

As a server-side web application, our system is designed using Java Server Pages

(JSP) and servlet technologies based on object oriented programming concepts.
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JSP is mainly used to implement the system interfaces that are web pages showed

to users. A servlet is a Java program that runs in a Web server. Typically, the

servlet takes an HTTP request from a browser, generates dynamic content (e.g.,

by querying a database), and provides an HTTP response back to the browser.

Alternatively, it can be accessed directly from another application component or

send its output to another component. Most servlets generate HTML text, but a

servlet might instead generate XML to encapsulate data. For a Web application,

we need to implement a servlet by extending the javax.servlet.http.HttpServlet

abstract class. The HttpServlet class mainly includes the following functions:

• init(...): Initialize the servlet.

• destroy(...): Terminate the servlet.

• doGet(...): Execute an HTTP GET request.

• doPost(...): Execute an HTTP POST request.

• doPut(...): Execute an HTTP PUT request.

• doDelete(...): Execute an HTTP DELETE request.

• service(...): Receive HTTP requests and, by default, dispatch them to the

appropriate doXXX() functions.

• getServletInfo(...): Retrieve information about the servlet.

A servlet class that extends HttpServlet implements some or all of these func-

tions, which will override the original implementations as necessary to process the

request and return the response as desired.

Each function takes as input an HttpServletRequest instance (an instance of a

class that implements the javax.servlet.http.HttpServletRequest interface) and an

HttpServletResponse instance (an instance of a class that implements the javax.serv

let.http.HttpServletResponse interface).

The HttpServletRequest instance provides information to the servlet regarding

the HTTP request, such as request parameter names and values, the name of the
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remote host that made the request, and the name of the server that received the

request. The HttpServletResponse instance provides HTTP-specific functionality

in sending the response, such as specifying the content length and MIME type and

providing the output stream.

We implement a servlet, the class Task inherited from HttpServlet, which is the

process center to receive requests, communicate with other classes which actually

do the operations, and respond to the requests using the results obtained from the

related classes. As a subclass of HttpServlet, Task overrides the doPost(. . .) func-

tion. In Task, doGet(. . .) does the same work as doPost(. . .), then the doGet(. . .)

function is implemented by calling doGet(. . .) function directly. In the system, we

also design other classes for data structures of answer sets and policy rules, and

policy management and decision engines.

Figure 3.10 shows the system architecture. We implement RI (Request Interface)

through which the requests from the global network ask to access XML documents

and PMI (Policy Management Interface) through which the system administra-

tor manages the policy bases for the XML documents using JSP. For the policy

management security, we create a bean for the valid authentication of the system

administrator. If the system administrator has been authenticated correctly, we set

the related property in the bean valid. For each page that is for policy operations,

we check whether the property in the bean is valid and decide whether the page can

be accessed.

DE (Decision Engine) is the access control decision engine which receives the

access request and makes the decision based on the XML document requested and

its policy base. DE obtains the authorizations through computing the answer sets

of the logic program generated from the policy base by SModels . PME (Policy

Management Engine) is the policy management engine which processes the policy

operations requested from the system administrator.

In our system, the protected XML documents and their corresponding policy

bases are stored in Xindice database that are denoted as XML and XPolicy re-

spectively in Figure 3.10.
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For the efficiency of the system, we cache the tag library and authorization

information for the most requested XML documents. If the XML document and its

corresponding policy base have not been modified, DE does not need to compute

the authorization again, from which, the requester’s view can be directly generated.

3.4.2 The Classes of Data Structures for Policy Base and

Answer Sets

Our system has basic data structures that are used to store the policy base and

answer set information. Java is an object oriented programming language, in which

everything is considered as an object and each object is implemented as a class.

Our system consists of classes and the relationships among them. We design a set

of classes for the policy base and answer sets. Figure 3.11 shows the class diagram

for the set of classes to encode the policy base.

In the class diagram of UML, each rectangle denotes a class which can be sub-

divided into three components. The top component is for the name of the class, the

second is for the attributes of the class, and the third is for the functions of the class.
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Figure 3.11: Class diagram for policy base classes

The name in italics denotes that the class is an abstract class. Here we omit the last

two components and only use the simplified class diagram to show the relationships

between classes. The line with an arrow denotes the reference association between

two classes. The line with a blank triangle denotes that the class is the subclass

of the other one pointed at by the triangle. As shown in Figure 3.11, we define

the class policybase with the reference to the class Rule which holds the reference

to the class Statement. The cardinality 1..∗ in the reference relationship denotes

that an instance of the class policybase references to one or more than one instances

of the class Rule and the same explanation for the classes Rule and Statement.

Statement is an abstract class which is inherited by a few subclasses, relStmt, as-

sertStmt, authStmt, deleStmtSub, deleStmtSubSet, deleStmtSthd and deleStmtDthd.

They extend the class Statement with special attributes and functions and imple-

ment the abstract functions defined in class Statement. In the following, we present

some important attributes and functions.

In the class Statement, there are some static attributes to define the statement

types:

public static final int RELATION STMT = 0;

public static final int ASSERT STMT = 1;

public static final int AUTH STMT = 2;

public static final int DELE STMT SUB = 3;

public static final int DELE STMT SUBSET = 4;

public static final int DELE STMT STHD = 5;
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public static final int DELE STMT DTHD = 6;

The class Statement is an abstract class in which the common attributes and

functions for the specific statements are defined. Since all kinds of statements have

an issuer, we define the attribute issuer and related functions getIssuer() and

setIssuer(String issuer) in the class statement as follows:

String issuer = NULL;

public void setIssuer(String person) { issuer = person; };

public String getIssuer() { return issuer; }

We also define the following abstract functions in class Statement:

public abstract int getType();

public abstract String tranToAL();

public abstract String tranToLpH();

public abstract String tranToLpB();

public abstract void setFromDb(Node originalnode, String prefix).

The above functions are abstract that should be implemented in the subclasses.

For instance, the function getType() is to get the statement type. In the class

assertStmt, we have the following implementation:

public abstract int getType() { return ASSERT STMT };

The specific statements implement the function tranToAL() to transform the state-

ment to the format in language AL∗. The functions tranToLpH() and tranToLpB()

are implemented to transform the statement to the predicate in the logic program

as a head statement and body statement respectively. The function setFromDb()

is to get the statement information from the policy base database. In other words,

it is to read the detailed statement information from the database and set them to

the corresponding attributes of the specific statement classes. For instance, in the

assert statement, we can get the issuer, assertT itle, and arguments of the assert

statement from the policy base stored in the XML database and assign them to

corresponding attributes of class assertStmt.
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In class Rule, there are an attribute for a head statement, an attribute for a list

of positive body statements, and an attribute for a list of negtive body statements.

The class policybase includes a list of rules. We implement the functions in class

policybase to load the rules into the rule list from the policy base database and to

add, delete, and retrieve a rule from the rule list.

To generate the authorizations from answer sets, we implement the class answerSets

which is for a list of answer sets.

In this section, we mainly focus on the introduction of classes for the data struc-

tures and the relationships between them. In Section 3.4.3, we give more attributes

and functions of them related with the policy management and decision engines.

3.4.3 Policy Management and Decision Engines

The focus of this section is the internal implementation mechanisms of the policy

management and access control decision engines which are the core components of

our system. Here we present the detailed internal implementation issues. In the

following sections we use pseudocodes to explain our design instead of the source

codes in Java.

Policy Management Engine

Policy management functions include loading and unloading XML documents

and their corresponding policy bases into the system which are stored in Xindice, a

native XML database system, as well as adding, deleting, and updating rules in the

policy bases. The policy management engine consists of a set of classes to implement

the above functions based on XML : DB API as shown in Figure 3.12.

Apparently, all the policy management functions invoke the database opera-

tions. The abstract class Action mainly creates a database connection and gets

the database entrance which is required by other classes in the policy management

engine.

During the system process, the database is accessed continually. To control

the system resources efficiently and safely, it is better for the system to keep one

global database collection instance during its life cycle. All the database operations
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Figure 3.12: Class diagram for policy management

communicate with the same global instance. We implement it using the singleton

pattern in Java. We define a static database connection in the class Action as

follows:

protected static DBConnection connection = new DBConnection().

The class Action provides the function:

public Collection getCollection(. . .),

through which the subclasses of Action can obtain the global instance of the database

collection.

We implement the following subclasses of Action:

• AddXML: add an XML document into the database.

• DeleteXML: delete an XML document from the database.

• GetNode: retrieve a node which can be the root node or an ordinary node in

an XML document DOM tree.

• AddRule: it is to add a policy rule into the policy base which has the format

defined in XPolicy .

• DeleteRule: delete a policy rule in a policy base.

• EditRule: edit a policy rule in a policy base.

• ListRule: list the rules in a policy base stored in the database.
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Attribute Type Description
docRoot XNode The root node of doc
requester String The requester
reqPriv String The requested privilege
reqObj String The requested XML document
tab lib ArrayList The tags of nodes
parent ArrayList The parent and child relationships
instance ArrayList The instance information
auth lib ArrayList The authorizations related to the request

Table 3.1: Attributes in Class policybase

Decision Engine

The decision engine receives a request from the RI (Request Interface), loads the

requested XML document and its corresponding policy base, transforms the policy

base into a logic program, computes the answer sets of this program using SModels ,

extracts authorizations over the requester, and finally generates the requester’s view.

During the decision process, the engine needs data structures to store the different

components. The data structures and functions in the decision engine are defined as

attributes and functions in the class policybase. Table 3.1 summaries the important

attributes required by the decision engine in the class policybase.

The docRoot is used to record the root node of the requested XML document

which is an instance of the class XNode. We define the class XNode which imple-

ments the interface Node in the package org.w3c.dom. The following attributes and

functions are added into XNode:

{ private byte auth;

public string tag;

public void label();

public void prune(); }.

We use tag to store the “tok” of the node and auth to represent whether the

node has been granted privileges to the requester, each bit of which represents one

privilege. The auth has 8 bits that can express the states of 8 privileges. Here we

only use one bit and other 7 bits are reserved to extend the system later. Table 3.2

shows the bits assignments.
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Bit Value Privilege Value
0 Read 1
1 Reserved 2
2 Reserved 4
3 Reserved 8
4 Reserved 16
5 Reserved 32
6 Reserved 64
7 Reserved 128

Table 3.2: Bits assignment for privileges in XNode

We denote the value of a privilege as Vp. We set and remove this privilege in the

byte auth using the following expressions respectively:

setting operation: auth = auth | Vp;

removing operation: auth = auth & (255 − Vp)

Initially, we set the auth zero to denote that there is no any privilege permitted.

The function label() sets the auth of the node and its child nodes based on the

auth lib. The function prune() removes the node and its child nodes with negative

authorizations.

The attributes tag lib, parent, instance, and auth lib are defined as the type

ArrayList, which is an implemented List with an array. The ArrayList allows rapid

random access to its elements, but is slow when inserting and removing elements

from the middle of a list. The reasons we define the above four attributes as the

type ArrayList are that they will be created and accessed in sequence and we do

not have inserting and removing operations over them. The ArrayList is a storage

cabinet to hold the objects. Each time elements in an ArrayList are retrieved, their

types should be expressed explicitly. All the above four attributes hold a list of

String[2]’s.

For each element tag lib[i] in tag lib, the tag lib[i][0] and tag lib[i][1] denote the

ne and tok of a node respectively as defined in Section 3.3.3. The parent[i] rep-

resents toks of two nodes extracted from tag lib to denote that parent[i][0] is the

parent node of parent[i][1]. The instance[i] also holds toks of two nodes to denote

that instance[i][0] is an instance of instance[i][0]. For an auth lib[i], auth lib[i][0]
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represents the sign of the authorization, in which “ − ” means the negative autho-

rization and “+” means the positive authorization. The auth lib[i][1] represents the

tok of the object in the authorization. Then the auth lib[i] denotes that the user

requester is granted the auth lib[i][0] privilege reqPriv over the object auth lib[i][1].

In the decision engine, the main function is computeV iew() defined in the class

policybase. When our system receives a request req(s, p, o), it creates an instance

of policybase as follows:

policybase pb = new policybase(s, p, o);

The construct function of policybase does the following initial process:

{ requester = s;

reqPriv = p;

reqObj = o;

doc = new secDocument(o);

docRoot = doc.root;

}

We present the function computeV iew() and other related functions as follows:

void computeV iew() {

docRoot.parse(0);

pb.tranToLp();

pb.obtainAuth();

docRoot.label();

docRoot.prune();

}

void parse(int seq) {

this.tag = seq;

If this 6= docRoot

String[2] pt = {this.parent().tag, this.tag};

parent.add(pt);

For n in this.getChildNodes()

i = seq + 1;
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do n.parse(i);

}

void tranToLp() {

lp = pb.getDomainRules();

For each rule in pb

lp + = rule.tranToLp();

EndFor

lp + = pb.getPropRules();

lp + = pb.getConflictResRules();

}

void obtainAuth() {

Create a new process smprocess to run Smodels

ansSets = smprocess.output();

For each predicate pred == grant(s, right(sn, p, o)) do

If pred exists in all answer sets and

s == pb.requester and p == pb.reqPriv

String[2] auth = {sn, o};

auth lib.add(auth);

EndIf

EndFor

}

void label() {

If this.tag == auth lib[i][1] and auth lib[i][0] == “ + ”

this.auth = this.auth | 1;

Else

this.auth = this.auth & 254;

EndIf

For n in this.getChildNodes()

do n.label();

EndFor
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}

void prune() {

For n in this.getChildNodes()

do n.prune();

EndFor

If this.getChildNodes() == ∅ and this.auth 6= “ + ”

remove the current node;

EndIf

}

Note that in the function obtainAuth(), we create a new process to run Smodels

using Runtime.getRuntime(). In the function tranToLp(), the attribute instance

of policybase is built in the function rule.tranToLp().

3.4.4 Security Consideration for Policy Management

As a web application, the users in the global network can access the pages in the

system freely. However, the policy management pages apparently should only permit

the authorized users to access.

We implement a java bean, validAdminBean to denote the identity verification

state, which includes one property “private boolean valid”. For this property, we

have the following two public functions:

public boolean getV alid() { return valid; };

public void setV alid(boolean val) { this.valid = val; }.

After a user requests the login page and fills in his/her password, the system

runs the verification process, in which the system checks whether the password

is valid or not, and if the user passes the verification, the system creates the java

bean validAdmin and sets the property by the function setV alid(true); otherwise,

the system will redirect the user back to the login page. In the beginning of each

page related to the policy management, we add codes to check whether the bean

validAdmin exists. The source codes for the above functions are implemented using

the standard tag library in JSP.
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3.5 Summary

So far, the fine grained access control prototype system for XML documents consid-

ering delegation has been implemented, which is a web application to protect XML

resources in distributed environments. The users in Internet can make requests to

access the XML documents stored in the system. Based on the policy bases for the

resources, the system responses with the permitted content.

In our system, the policy specification language AL∗ was simplified from AL

and its XML format, XPolicy was developed to specify the policy bases for the

protected XML documents. We discussed the privilege, propagation option and

conflict resolution problems in the system and defined the policy semantics through

Smodels. The java implementation of the system was also presented including the

system architecture, details of designing data structures and algorithms, and the

security considerations of the policy management.
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Chapter 4

A Unified Framework for Security

Protocol Verification and Update

In this chapter, we propose a unified framework that analyzes security protocols,

which were proven secure under models in provable security approach, and repairs

protocols that we find insecure against certain types of attacks. Our framework is

based on Answer Set Programming to verify a security protocol. More importantly,

the protocol update is also integrated into our framework.

Although only Bellare-Rogaway model [14, 15, 16] is provided in this chapter,

we should state that our approach is general enough to be used for other models.

At this point, our research is close to Choo et al. [33], which analyzes the provably

secure protocols under Canetti-Krawczyk model.

The framework includes the following three components:

1. Protocol specification: We use ASP to specify the protocol, adversary actions,

and attacks based on the adversary model. Instead of the definition of security

in Bellare-Rogaway adversary model, we give the definition of insecurity on

which we specify the attacks. In this chapter, we choose the Boyd-González

Nieto conference key agreement protocol as our case study protocol, which

carries a claim of provable security using Bellare-Rogaway adversary model.

2. Protocol verification: After the specification phase, we generate a logic pro-

gram, which can be computed by Smodels. Attacks exist if there are answer

sets from which our framework can pick up the attack traces.

113
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3. Protocol update: In our framework, we set up a set of generic update methods

for certain attacks, which have been revealed previously, such as unknown

key share attack, reflection attack, and the key-replicating attack. If attacks

are found in a protocol, its specification will be rewritten with respect to the

set of update methods and updated through the forgetting algorithm, which

is developed based on a logic programming update technique [100]. Then the

updated program will be re-analyzed and checked whether flaws in the protocol

have been repaired.

In the following, we first introduce the adversary model modified from Bellare-

Rogaway model and our case study protocol - Boyd-González Nieto conference key

agreement protocol which has been proven secure under Bellare-Rogaway model. Af-

ter defining the security protocol specification language Lsp, we present the security

protocol specification using Lsp, the protocol verification, and the protocol update

based on ASP. Through our case study protocol, we demonstrate the application of

our approach.

4.1 Concepts and Notations

4.1.1 Adversary Model

In the setting of the provable security approach for protocols, the adversary model

comprises principals taking part in the protocol and a powerful, probabilistic, and

polynomial time adversary. The adversary A controls all communications of all

principals in the model by interacting with a set of oracles, each of which represents

an instance of a principal in a specific protocol run. Each principal has an identifier

Ui from a finite set {U1, U2, . . . , Un} and they can run the multiple sessions concur-

rently. Oracle Πs
Ui

represents the sth instance of principal Ui in a specific protocol

run. A interacts with the protocol session through queries, which are described as

follows.

Send(Ui, s, m): Send message m to oracle Πs
Ui

. The oracle will return to the

adversary next message according to the protocol specification (this includes the
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possibility that m is not of the expected format in which case Πs
Ui

may simply halt).

If Πs
Ui

accepts the session key or halts, this is included in the response.

Reveal(Ui, s): Reveal the session key (if any) accepted by Πs
Ui

. This query models

the adversary’s ability to find the session key.

Corrupt(Ui): This query allows the adversary to corrupt the principal Ui at

will, and thereby learn the complete internal state (e.g., password) of the corrupted

principal.

The definition of partnership is used to restrict the adversary’s Reveal and Cor-

rupt queries to oracles that are not partners of the oracle whose key the adversary

is trying to guess. The way of defining partner oracles has varied in different ap-

proaches. In the more recent research [60, 62, 64], partners have been defined by

having the same session identifier (SID) which consists of a concatenation of the

messages exchanged between the two principals. In our case study protocol, since

all messages are broadcasted, we expect all oracles in the same session to derive the

same session identifiers. Therefore we define SID(πs
U) as the concatenation of all

messages that oracle Πs
U has sent and received.

Definition 4.1 A set of oracles are partnered if they have accepted with the same

session identifier (SID) and have agreed on the same set of principals and on the

initiator of the protocol.

The notion of freshness is defined based on the notion of partnership in definition

4.1.

Definition 4.2 An oracle Πs
Ui

is fresh at the end of its execution if Πs
Ui

has accepted

with set of partners Π∗, Πs
Ui

and all oracles in Π∗ are unopened (have not been sent

a Reveal query), and all principals in Π∗(including Ui) have not been corrupted.

Instead of the definition of security in Bellare-Rogaway model, we present the

definition of insecurity in our model. Our approach analyzes the protocol and check

whether there are attacks in it. If an attack is found, we consider the protocol

is insecure. However, if there is no attack, we can not claim that the protocol is

secure. Definition of insecurity for the protocol depends on notions of partnership

and freshness of oracles.
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Definition 4.3 A protocol is insecure in our framework if one of the following con-

ditions is satisfied:

1. Two fresh non-partner oracles accept the same session key,

2. Some fresh oracle accepts certain session key, which has been exposed, and

3. Some fresh oracle accepts and terminates with no partner.

4.1.2 Boyd-González Nieto Conference Key Agreement Pro-

tocol

The Boyd-González Nieto protocol for conference key agreement [27] carries a claimed

proof of security in Bellare-Rogaway model [14, 15, 16]. This protocol involves a set

of n principals, U = {U1, . . . , Un}. Figure 4.1 shows message flows in a protocol run

without any disruption from the adversary. In this protocol, the notation (eU , dU)

denotes encryption and signature keys of principal U respectively; {.}eU
denotes the

encryption of any messages under the encryption key eU ; SdU
{.} denotes the signa-

ture of any messages under the signature key dU ; Ni denotes a nonce; H denotes

some one-way function and SKUi
denotes the session key accepted by principal Ui

in the end of the protocol run, and * denotes a broadcast message.

In the protocol run, there is a special principal called initiator and other prin-

cipals called responders. The initiator U1 chooses a nonce N1, and sends it to

responders in an authenticated and confidential way. The responders broadcast

their nonces to other principals in U . By the end of the protocol run, all principals

compute their session keys SKUi
= H(N1||N2||N3 . . . ||Nn) respectively.

1. U1 → ∗ : U = {U1, U2, . . . , Un}, SdU1
(U, {N1}eU2

, . . . , {N1}eUn
)

2. U1 → ∗ : {N1}eUi
for 1 < i ≤ n

3. Ui → ∗ : Ui, Ni

SKUi
= H(N1||N2||N3 . . . ||Nn)

Figure 4.1: Boyd-González Nieto Conference Key Agreement Protocol
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4.2 A Security Protocol Specification Language

Lsp

The language Lsp includes numbers, constants, variables, function symbols and pred-

icate symbols.

1. Numbers

We use numbers to denote message id, message type, and time in a protocol

run.

2. Constants

Constants are arbitrary strings of English characters and numbers that begin

with a lowercase letter to denote principal identifiers who take part in the

protocol run. We have a special constant, all to denote all principals in the

protocol run. Generally, we use a to denote the adversary, ui to denote a

regular participant in the protocol run.

3. Variables

Variables are arbitrary strings of English characters and numbers that begin

with a uppercase letter to denote principals, messages, keys, and times. Gen-

erally, we use A, B, C, . . . to denote principals, M, Mi to denote message ids,

P, Pi to denote message types, K, Ki to denote keys, T, Ti to denote times,

and S, Si to denote basic elements of messages such as principal identifiers,

random nonces, encryptions, and signatures.

4. Function symbols

Function symbols are strings that start with a lowercase letter. There are two

kinds of functions in Lsp, arithmetic function and symbolic function. Both

functions are supported by Smodels. In Smodels, arithmetic functions are

internal functions that can be computed and symbolic functions just define

new constants as an argument for predicates after the grounding process in

the application. For instance, 5 ∗ 3 + 2 equals 17, and pKey(A) defines a

constant to denote principal A’s public key. We present the following symbolic

functions.
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- pKey(A), sKey(A), sig sKey(A), and sig vKey(A)

pKey(A) and sKey(A) denote public and secret keys of the principal

A for encryption respectively; sig sKey(A), and sig vKey(A) denote

signing and verifying keys of the principal A for the signature purpose.

- n(N), nonce(A, n(N))

n(N) denotes a unique random nonce identified by the sequence number

N in a protocol run. nonce(A, n(N)) denotes that n(N) is the nonce

selected by principal A which may be not true. We explain this point in

predicate holds later.

- msg(S1, S2, . . . , Sn)

msg is a function with variable parameters. It denotes one message which

is the concatenation of a few basic elements, S1, S2, . . . , Sn, where Si can

be a principal identity, a random nonce, an encryption, or a signature.

In the remainder of the paper, for readability, we use the mathematical

form S1||S2 . . . ||Sn to represent this function.

- sign(K, msg(.))

It denotes a signature of msg(.) using key K.

- enc(K,msg(.))

It denotes an encryption of msg(.) using key K.

We should point out that from definitions, it is clear that msg, enc and sign

are defined in a recursive way. However, in most protocols, even complex

ones, the format and number of valid messages are usually fixed, which can be

expressed by finite basic elements, except some special protocols [76, 83].

5. Predicate symbols

Predicate symbols are strings that start with a lowercase letter. We present

the predicate symbols that are common for most security protocols.

We start with some basic sort predicates to model the basic components in

the language.

- player(A) denotes that A is a regular participant.
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- adversary(A) denotes that A is the adversary.

- agent(A) denotes that A is a principal who may be a regular participant

or the adversary. We have the following implicit rules for principals.

agent(A) ← player(A).

agent(A) ← adversary(A).

- ag id(A,N) denotes that A’s id number is N .

- key(K) denotes that K is a key for encryption or signature which can be

pKey(A), sKey(A), sig sKey(A), or sig vKey(A).

- asymKeyPair(K1, K2) denotes that K1 and K2 are a pair of keys in

asymmetric encryption system. For instance, we have asymKeyPair

(sKey(A), pKey(A)) and asymKeyPair(pKey(A), sKey(A)) for the en-

cryption keys.

Next, we present predicates for modelling actions in the protocol run. Note

that all the following predicates have the time feature because we consider a

protocol run is a sequence of actions.

- sends(A,B, M, P, T ) denotes that A sends B the message M with type

P at time T .

- gets(A,M,P, T ) denotes that A gets the message M with type P at time

T .

- intercept(A,M, P, T ) denotes that A intercepts the message M with type

P at time T .

- holds(A, X, T ) denotes that A knows X at time T , where X can be a

message id or a basic element of messages.

- contains(M, P, msg(S1, S2, . . . , Sn)) denotes that the content of the mes-

sage M with type P is msg(S1, S2, . . . , Sn). We introduce this predicate

to connect a message id with its real message content.

In this section, we only present common functions and predicates for most secu-

rity protocols. It is necessary and feasible to provide extra functions and predicates
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for particular protocols.

4.3 Protocol Specification

A protocol is a process to exchange a sequence of messages among principals in

the protocol run. For computational efficiency and expressive concision, in our

specification, we represent a message using a message id which is a unique number

for each message sent by principals, together with a message type which is the order

number of the message in protocol flows. For instance, in our case study protocol

showed in Figure 4.1, the message order number, 1, 2, and 3 before message bodies

are their message types.

In [4], Aiello et al. proposed a logic programming based approach for the se-

curity protocol verification. Comparing with their work, integrating both protocol

verification and update into our framework distinguishes our approach from theirs

in a significant way. In the protocol specification, we express messages using mes-

sage id and type, instead of the message content directly as in [4]. In this way,

it reduces information redundancy in answer sets and makes the specification and

answer sets more concise. Moreover, it is more suitable to design an algorithm for

finding attack traces. In [4], Aiello et. al. presented predicates said(A,B, M, T )

and got(A,M, T ) to denote that they are true when their corresponding actions

says and gets happened before time T . Although it provides flexibility to explicitly

specify information about past runs of the protocol, there are increasing efficiency

and memory costs in their approach based on our logic programming experiments.

4.3.1 Modelling Security Protocols

Now we present how to model a security protocol through the case study protocol

(refer to the appendix D for the complete specification program). For specification

simplicity and efficiency, we simplify the case study protocol to a two-party protocol

showed in Figure 4.2 as explained in [60]. Because in a protocol flow of Figure 4.1,

messages 1 and 2 can be sent concurrently, in the simplified protocol, we merge them
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into one message.

1. U1 → U2 : U = {U1, U2}, SdU1
(U , {N1}eU2

), {N1}eU2

2. U2 → U1 : U2, N2

SKU1
= H(N1||N2) = SKU2

Figure 4.2: Simplified Boyd-González Nieto Conference Key Agreement Protocol

Let U = {U1, U2}. The initiator, U1 encrypts N1 using the public key of U2, signs

U and the encrypted nonce {N1}eU2
, and broadcasts U , the signature value and the

encrypted nonce in message flow 1. The principal, U2, upon receiving the initial

message, will respond with his/her identity and a random nonce in message flow 2.

The first part of protocol specification is to set up principals and their keys

through predicates, player(A), agent(A), ag id(A, N), and key(K), where K is a

key function. For instance, in our case study protocol, we have

player(u1), player(u2), adversary(a)

ag id(u1, 0), ag id(u2, 1), ag id(a, 2)

key(pKey(A)) ← agent(A).

key(sKey(A)) ← agent(A).

key(sig sKey(A)) ← agent(A).

key(sig vKey(A)) ← agent(A).

The second part is to model the relationship between keys of principals. In our

case study protocol, there are encryption and signature keys which are specified as

follows.

asymKeyPair(pKey(A), sKey(A)) ← agent(A).

asymKeyPair(sig sKey(A), sig vKey(A)) ← agent(A).

asymKeyPair(K1, K2) ← asymKeyPair(K2, K1).

The third part is about message flows in a protocol. During a protocol run, we

assume that if a principal A sends a message to B and the adversary does not

intercept it, B will receive it at the next time. We model the assumption using the

following rule:
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gets(B, M, P, T + 1) ← sends(A,B,M,P, T ),

neq(A,B), not intercept(a,M, P, T + 1).

A protocol consists of a sequence of messages. Except the first message which is

sent by the initiator of the protocol run, principals will check preconditions before

they send a response message. As explained in [4], a protocol is denoted as:

A → Bi1 : mi1 , pi1 % first message A must send

. . .

Bj1 → A : mj1 , pj1 % first message A must receive

. . .

A → Bis : mis , pis % last message A must send before m

. . .

Bir → A : mir , pir % last message A must receive before m

. . .

A → B : m, p

As showed above, principal A will send message (m, p) to B, if we check that a

sequence of messages have been received and sent before (m, p) in a correct run. We

encode this as the following rule:

sends(A,B,m, p, T + 1) ←

sends(A,Bi1 ,mi1 , pi1 , Ti1), . . . , sends(A,Bis ,mis , pis , Tis),

gets(A,mj1 , pj1 , Tj1), . . . , gets(A,mir , pir , Tir),

Tj1 > Ti1 , . . . , Tir > Tis , b1, . . . , bn

contains(m, p, msg(.)).

In the above rule, b1, . . . , bn are protocol dependent literals. We consider precon-

ditions for sending message m by principal A as actions that A has performed in

previous steps according to the protocol run. Protocol dependant literals are usually

to check the freshness of random nonces or timestamps and other conditions needed

by particular protocols. Because we represent a message using a message id and

type in predicate sends, we should add a fact rule, which denotes what the message

is about using the predicate contains(.).
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For instance, in our case study protocol, principal u1 sends an initial message to

start a protocol run. We model it as the following rules:

sends(u1, all, 0, 0, 0).

contains(0, 0, agset(u1, u2)).

contains(0, 0, sign(sig sKey(u1), agset(u1, u2)||enc(pKey(u2), n(0)))).

contains(0, 0, enc(pKey(u2), n(0))).

Finally, we model the principal’s knowledge including the principal’s initial

knowledge base and knowledge change during the protocol run. Each principal

taking part in the protocol run has an initial knowledge base such as other princi-

pals’ public keys. While sending and receiving messages, principals will hold them

and derive more information by breaking or decrypting all messages for which they

have a key. Their knowledge will change during the protocol run. We use predicate

holds(.) to specify principals’ knowledge.

For encryption and signature keys in the case study protocol, we code initial

knowledge bases for principals using the following rules:

holds(A, pKey(B), 0) ← agent(A), agent(B).

holds(A, sig vKey(B), 0) ← agent(A), agent(B).

holds(A, sKey(A), 0) ← agent(A).

holds(A, sig sKey(A), 0) ← agent(A).

Then we write the following rules to model principals’ knowledge change during

the protocol run.

holds(A,M, T ) ← gets(A, M,P, T ).

holds(A,M, T ) ← sends(A, B, M,P, T ).

holds(A, S, T ) ← holds(A,M, T ), contains(M,P, S).

holds(A, S1, T ) ← holds(A,M, T ), contains(M, P, S1|| . . . ||Sn).

. . .

holds(A, Sn, T ) ← holds(A,M, T ), contains(M,P, S1|| . . . ||Sn).
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holds(A, S1, T ) ← holds(A, enc(K1, S1|| . . . ||Sn), T ),

holds(A,K2, T1), asymKeyPair(K1, K2).

. . .

holds(A, Sn, T ) ← holds(A, enc(K1, S1|| . . . ||Sn), T ),

holds(A,K2, T1), asymKeyPair(K1, K2).

4.3.2 Modelling Adversary Actions

In the adversary model described in Section 4.1.1, the adversary A is able to intercept

messages, swap data components in the intercepted messages to form new messages,

or fabricate new messages according to message forms in security protocols. A can

send messages to oracles through Send query. If any oracles have accepted a session

key, A can obtain the session key through Reveal query.

A controls all the communication among principals taking part in the protocol

run. We start to model that A is able to get all messages. In the rules of the

following sections, α denotes the adversary.

gets(α,M,P, T + 1) ← sends(A, M,P, T ).

Next, after getting messages, A is able to decide intercepting them or not, which

can be modelled by choice rules in Smodels as follows:

{intercept(α,M, P, T )} ← gets(α, M,P, T ).

Although A is able to fabricate new messages randomly, which are of infinite

forms, the protocol analyst modelling the adversary action usually creates messages

according to forms in the protocol. For instance, the initial message in our case

study protocol includes three sub-messages: a set of principals, U = {U1, U2}; a

signature of U , and the encryption of the random nonce of U1 using the public key

of principal U2, {N1}eU2
; and the encryption, {N1}eU2

.

Initial message m : {U = {U1, U2} || SdU1
(U , {N1}eU2

) || {N1}eU2
}

In this message, if A alters the value {N1}eU2
, the signature verification will make

the message invalid and the protocol run will halt. However, A can modify it to a

new message as follows and send it to U2.
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Modified message m′ : {U = {a, U2} || Sda
(U , {N1}eU2

) || {N1}eU2
}

When getting this modified message, U2 considers that A initiates a protocol run.

4.3.3 Modelling Attacks

In our framework, the adversary model is closely based on Bellare-Rogaway model.

If protocols with claimed security under Bellare-Rogaway model are found to be

violating any of the conditions in the definition of insecurity in section 4.1.1, they

will be insecure in Bellare-Rogaway model. Moreover, the proof of the protocol will

also be invalid.

Based on the definition of insecurity, we should model the SIDs and session

keys of principals. The SID of a principal is the concatenation of all messages he

receives and sends. We use predicate inSidList(U,M) to record the messages that

the principal U receives and sends.

inSidList(U,M) ← sends(U, all,M, P, T ).

inSidList(U,M) ← gets(U,M, P, T ).

The following two rules specify that two principals have the same SID, where

the first one denotes that sid neq pair(U1, U2) is true if a message is in the session

id list of principal U1 and not in the session id list of principal U2, and the second

one specifies conditions which should be satisfied for two principals to have the same

SIDs.

sid neq pair(U1, U2) ←

inSidList(U1,M), not inSidList(U2,M), neq(U1, U2).

same sid pair(U1, U2) ←

not sid neq pair(U1, U2), not sid neq pair(U2, U1), neq(U1, U2).

In our case study protocol, the session key of a principal is a one-way hash

function of the concatenations of random nonces of all principals taking part in the

conference protocol.
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sk(A, h(n(M1), n(M2))) ← holds(A, agset(B,C), T ),

holds(A, nonce(B, n(M1)), T1), holds(A, nonce(C, n(M2)), T2).

The following rule models that principal U1 and U2 have the same session keys:

same sk pair(U1, U2) ←

sk(U1, h(n(M1), n(M2))), sk(U2, h(n(M1), n(M2))), neq(U1, U2).

Consider the condition 1 in insecurity definition (Definition 4.3) for an instance,

if two non-partner oracles have the same session keys, the protocol is insecure. Here

the two oracles are not partners if they have different SIDs. The attack is then

modelled as follows:

attack ← same sk pair(U1, U2), not same sid pair(U1, U2).

Note that same sk pair(U1, U2) denotes that principals U1 and U2 have the same

session keys and same sid pair(U1, U2) denotes that principals U1 and U2 have the

same SIDs.

4.4 Protocol Verification

After specifying security protocols, adversary actions, and attacks using language

Lsp, we merge three parts into a logic program P in which we add a constraint rule,

← not attack.

We use Smodels sytem to verify security protocols in the following steps:

1. Using lparse, we obtain a finite ground logic program Pg from program P.

2. Using smodels, we compute answer sets of ground program Pg.

3. If no answer set exists, the attack does not exist for protocol runs up to time

tmax
1.

1tmax is a max time limit setting up in the logic program.



§4.4 Protocol Verification 127

4. If there is an answer set, we collect atoms representing actions, sends, gets

and intercept that are true in the model, from which we can find the sequence

of actions that represents an attack trace.

We have conducted a verification experiment for our case study protocol using

a PC with an AMD Athlon1.73GHz CPU and 512MB RAM running Linux system,

in which the grounded protocol program had 7,601 atoms and 957,709 rules. The

verification result is presented in Figure 4.3 which shows the protocol run in the

presence of adversary A.

Attack found in time: 5.460

The attack 0 is as follows:

t0. u1 ---> all: (0,0) (agset(u1,u2)||

sign(sig_sKey(u1),agset(u1,u2)||enc(pKey(u2),n(0)))||

enc(pKey(u2),n(0)))

t1. a <--- (0,0)

t1. a intercepts (0,0) %%%%%%%%%%%%%%%%%

t1. a ---> u2: (11,0) (agset(a,u2)||

sign(sig_sKey(a),agset(a,u2)||enc(pKey(u2),n(0)))||

enc(pKey(u2),n(0)))

t2. u2 <--- (11,0)

t3. u2 ---> all: (8,1) (nonce(u2,n(8)))

t4. u1 <--- (8,1)

t4. a <--- (8,1)

Figure 4.3: A verification result of our case study protocol

The verification result in Figure 4.3 is described as follows:

1. At time t0, initiator u1 broadcasts an initial message which has three parts:

the set of principals in the protocol run, i.e. agset(u1, u2); the signature of

the principal set and encrypted random nonce n(0) under the public key of

principal u2: sign(sig sKey(u1), agset(u1, u2)||enc(pKey(u2), n(0))); and the

encryption of the encrypted random nonce n(0): enc(pKey(u2), n(0)).

2. At time t1, A receives the message and intercepts it. After modifying the prin-

cipal set to agset(a, u2) and making a new signature using his own signature

key, sign(sig sKey(a), agset(a, u2)||enc(pKey(u2), n(0))), A fabricates a new

message, and sends it to the principal u2. Now A acts as an initiator and

starts a different session.
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3. At time t2, principal u2 receives the message from A and believes that A

initiates a protocol run.

4. At time t3, principal u2 broadcasts his identifier and random number.

5. At time t4, both u1 and A receive the random nonce of principal u2. Principal

u1 believes that he finishes his own session with u2. However, u2 believes he

is in a different session from A.

In Figure 4.3, an attack was found in 5.460 seconds. We observe that principal

u1’s SID is (0, 8) and principal u2’s SID is (11, 8). Then u1 and u2 are not partners

in this protocol run since they do not have matching SIDs. Principal u1 believes

that the session key SKu1
= h(n(0)||n(8)) is being shared with u2, but u2 believes

that the session key SKu2
= h(n(0)||n(8)) = SKu1

is being shared with A. Although

A does not know the session key as A does not know the value of n(0), as u2’ partner

he is able to get SKu2
= h(n(0)||n(8)) from u2 which is the same as SKu1

. Our

case study protocol is therefore not secure under Bellare-Rogaway model as being

claimed.

In the existing proof, the security of the protocol is proved by finding a reduction

to the security of the encryption and signature schemes. The number of principals

allowed in the proof model is equal to the number of participants in the proof

simulation which is two in the above attack. However, in order to carry out the

attack, the adversary A corrupts a third participant and take part in the protocol

run as an ordinary participant. Since the third participant does not exist in the

model assumed by the proof, the proof shows the protocol is secure. However, it

fails.

4.5 Protocol Update

Following the protocol verification process as described in Section 4.4, a natural

question is: whether is it possible to correct the protocols that have been found

insecure?

In this section, we first introduce the concept of forgetting in logic programs
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[100], which is an efficient logic programming update technique. Then we present

an approach to repair security protocols using the forgetting algorithm.

4.5.1 Forgetting in Logic Programs

The concept of forgetting in logic programs [100] is an extension of forgetting in

classical propositional theories developed initially by Lin and Reiter [71]. The basic

problem of forgetting in logic programs is that after forgetting a set of atoms from a

logic program, what the original logic program will be. Intuitively, after forgetting

a set of atoms, all these atoms in the set should be eliminated in some way, those

atoms having certain connections to forgotten atoms through rules in the program

might or might not be affected depending on whether they are positive or negative

related to forgotten atoms, and all other atoms should not be affected. Since two

forms of negations named classical negation and negation as failure are allowed in

logic programs, forgetting atoms involved in these negations have to be treated in

different ways. To formalize the above idea, there are two kinds of forgettings, named

strong and weak forgettings, which are based on a program transformation called

reduction. Here we will only introduce weak forgetting as the strong forgetting is

not directly relevant in our protocol update approach.

As introduced in Chapter 1, a rule in the logic program is of the form:

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

In the rule r, each li is a literal. l0 is called the head of the rule and {l0} is denoted

as head(r), while the set of literals {l1, . . . , lm} is called the positive body of the

rule, denoted as pos(r) and the set of literals {lm+1, . . . , ln} is called the negative

body of the rule, denoted as neg(r).

Definition 4.4 [100] (Program reduction) Let Π be a program and p an atom.

We define the reduction of Π with respect to p, denoted as Reduct(Π, {p}), to

be a program obtained from Π by (1) for each rule r with head(r) = p and each

rule r′ with p ∈ pos(r′), replacing r′ with a new rule r′′: head(r′) ← (pos(r′) −

{p}), pos(r), neg(r), neg(r′); (2) if there is such rule r′ in Π and has been replaced

by r′′ in (1), then removing rule r from the remaining program. Let P be a set of
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propositional atoms. Then the reduction of Π with respect to P is inductively defined

as follows:

Reduct(Π, φ) = Π,

Reduct(Π, P ∪ {p}) = Reduct(Reduct(Π, {p}), P ).

Definition 4.5 [100] (Weak forgetting) Let Π be a logic program, and p a propo-

sitional atom. We define a program to be the result of weakly forgetting p in Π,

denoted as WForgetLP (Π, {p}), if it is obtained from the following transformation:

(1) Π′ = Reduct(Π, {p});

(2) Π′ = Π′ − {r|head(r) = {p}};

(3) Π′ = Π′ − {r|p ∈ pos(r)};

(4) Π′ = (Π′ − Π∗) ∪ Π†, where Π∗ = {r|p ∈ neg(r)} and Π† = {r′|r′ :

head(r) ← pos(r), not (neg(r) − {p}) where r ∈ Π∗};

(5)WForgetLP (Π, {p}) = Π′.

Weakly forgetting a set of atoms can be defined:

WForgetLP (Π, φ) = Π,

WForgetLP (Π, P ∪ {p}) = WForgetLP (WForgetLP (Π, {p}), P ).

Here we give an example of weak forgetting in logic programs.

Example 4.1 Let Π = {b ← a, c. d ← not a. e ← not f.}. Then we have

WForgetLP (Π, {a}) = {d ← . e ← not f.}.

✷

In [100], Zhang and Foo showed that the theory of (strong and weak) forgettings

has important applications in solving information conflict under multi-agent envi-

ronments. It can be served as a unified foundation for various logic program update

approaches.
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4.5.2 The Protocol Update Model

In this subsection, we define a protocol update model to update protocol specifica-

tions with respect to pre-defined protocol repair methods through weak forgetting

in logic programming introduced previously.

We consider a set of update methods for protocol repair, denoted as C = {c1, . . . , ck},

where each ci is a method for the protocol repair. We should mention that set C may

be dynamic in the sense that new update methods can be added when new attacks

are identified and their corresponding update methods are available. Moreover, for

a particular protocol, there may be some specific repair methods. For instance, the

following are some generic update methods for security protocols against certain

type of attacks.

1. In encryption scheme, add identities of the sender and the intended receiver

in encrypted messages.

2. In signature scheme, add identities of the sender and the intended receiver in

generated signatures.

3. In MAC scheme, add identities of the sender and the intended receiver in

generated MAC digests.

4. In key derivation function, include SID information. For instance, in our case

study protocol, session key is constructed as SKUi
= H(sid||N1||N2).

As showed in previous sections, after specifying a security protocol, we obtain a

logic program P which consists of a finite set of rules of the form:

r : h ← a1, . . . , am, not b1, . . . , not bn.

If an update method ci is used to repair a protocol, it will alter or delete some

rules in program P. We say these rules are affected by method ci, while the others

are not affected. In order to specify the protocol update, we introduce new atoms,

pi and qi which are called marking atoms, to denote original rules affected, and

updated rules by method ci respectively. That is, having the set of update methods

C = {c1, · · · , ck}, we extend language Lsp by adding a set of marking atoms: L∗
sp =

Lsp ∪ {pi, qi | i = 1, . . . , k}.
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Definition 4.6 (Protocol update model). Given a security protocol program P and

a set of update methods C = {c1, . . . , ck}, the protocol update model for protocol

program P on update method set C is M = (Pu,F), where Pu is a logic program in

language L∗
sp, and F is a set of atom pairs, if

1. F = {(p1, q1), . . . , (pk, qk)} and

2. Pu is generated from program P as follows:

Step 1: We divide program P = Pc ∪ Puc, where Pc = {r| r has been affected

by at least one update method in C} and Puc = {r| r has not been affected by

any update methods in C}.

Step 2: Checking each rule r in program Pc,

r : h ← a1, . . . , am, not b1, . . . , not bn.

Rule r is affected by a set of update methods {cl1 , . . . , cls} ⊆ C. We rewrite r

into r∗ as follows to denote that rule r affected by {cl1 , . . . , cls},

r∗ : h ← a1, . . . , am, not b1, . . . , not bn, pl1 , . . . , pls .

Update method cli may generate new rules to replace the original rule r which

have the following form:

rli : h′ ← a′
1, . . . , not b′1, . . . , qli .

where h′, a′
i and b′i are predicates that can be ones that appear in r or can be

protocol dependant predicates.

Step 3: We have marking rules for update methods {c1, . . . , ck}.

Pm = {pi ← not qi. qi ← not pi.| 1 ≤ i ≤ k}

Pu = Puc ∪ {r∗, ri| r ∈ Pc, 1 ≤ i ≤ k} ∪ Pm.

From Definition 4.6, we can observe the following changes for rewriting protocol

specification program. In Step 1, rules in P are classified into two classes: Pc

contains the rules affected by update methods, and Puc contains other rules that

are not affected. In Step 2, if a rule r ∈ Pc is affected by update method cl1 , · · ·,
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cln , we then rewrite r to r∗ by adding pl1 , · · ·, pln to r’s body. On the other hand,

update methods cli ∈ {cl1 , · · · , cln} may generate a new updated rules such as rli .

We also add these rules into Pc. Finally, we generate a set Pm of rule pairs of the

form pi ← not qi and qi ← not pi, which is for the purpose of deriving consistent

updated protocol.

Now, the program Pu includes all update information with respect to update

methods in C. If we choose to forget all update information which has been marked

by atoms qi’s, we are able to obtain the original protocol specification P0 using weak

forgetting algorithm introduced previously. That is

P0 = WForgetLP (Pu, {q1, . . . , qk}). (4.1)

We can obtain the updated protocol specification for update method ci, if we

forget update information except that related to ci and original information that

has been affected by ci. Then we compute the following program for the updated

protocol specification P i with respect to ci
2:

P i = WForgetLP (Pu, {q1, . . . , qi−1, qi+1, . . . , qk} ∪ pi). (4.2)

Note that each P i represents one repaired protocol by using update method ci. Fol-

lowing the verification approach described in section 4.4, we can verify the updated

protocol specification, check if the protocol has been repaired, and identify which

method is valid for the protocol repair.

Example 4.2 In section 4.3, we specified a case study protocol - Boyd-González

Nieto conference key agreement protocol, under our logic programming language Lsp,

which is formalized as the program P (see Appendix D for the complete description

of program P). Now we present two update methods c1 and c2 to repair this protocol,

where c1 is based on our proposed generic update methods, in which we add identities

of the sender and intended receiver in encrypted messages, and c2 is from [32], which

is similar to c1. The difference between the two methods is that c2 does not include

2In our approach, if we need combining two update methods to repair a protocol, we can define
a new update method for them and rewrite the rules affected by both methods.
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the identity of the receiver in the encrypted messages. The update model of program

P on update methods set C = {c1, c2} is M = (Pu,F), where F = {(p1, q1), (p2, q2)}.

We present rules affected by two update methods, c1 and c2, and give updated

rules for Pu. Refer to Appendix D for other rules that are not affected.

In program P , rules that include encryption messages are affected by both update

methods, c1 and c2.

r1: contains(0, 0, enc(pKey(u2), n(0))).

r2: contains(0, 0, sign(sig sKey(u1), agset(u1, u2)||enc(pKey(u2), n(0)))).

r3: contains(M1, 0, enc(pKey(U), n(M))) ←

intercept(a,M, 0, T ), sends(a, U,M1, 0, T ).

r4: contains(M1, 0, sign(sig sKey(a), agset(a, U), enc(pKey(U), n(M)))) ←

intercept(a,M, 0, T ), sends(a, U,M1, 0, T ).

r5: holds(C, nonce(A, n(N)), T ) ← holds(C, M, T ), holds(C, sKey(B), 0),

contains(M, 0, agset(A,B)), contains(M, 0, enc(pKey(B), n(N))).

Rules r1, r2, r3, and r4 denote the detailed information of a message using pred-

icate constains, for which update forms are similar. We take r3 as an instance to

demonstrate what rules will be generated with respect to update methods, c1 and

c2 as follows.

r∗3 : contains(M1, 0, enc(pKey(U), n(M))) ←

intercept(a,M, 0, T ), sends(a, U,M1, 0, T ), p1, p2.

r1
3 : contains(M1, 0, enc(pKey(U), A||B||n(M))) ← intercept(a,M, 0, T ),

sends(a, U,M1, 0, T ), contains(M, 0, enc(pKey(U), A||B||n(M))), q1.

r2
3 : contains(M1, 0, enc(pKey(U), A||n(M))) ← intercept(a,M, 0, T ),

sends(a, U,M1, 0, T ), contains(M1, 0, enc(pKey(U), A||n(M))), q2.

Rule r∗3 represents the original rule r3 affected by c1 and c2 in Pu, rule r1
3 repre-

sents the updated rule with respect to update method c1, and rule r2
3 represents the

updated rule with respect to update method c2. For rules r1, r2, and r4, we generate

similar rules as r3.
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Rule r5 models how a principal obtains nonce information and we generate the

following rules for r5.

r∗5 : holds(C, nonce(A, n(N)), T ) ← holds(C, M, T ), holds(C, sKey(B), 0),

contains(M, 0, agset(A,B)), contains(M, 0, enc(pKey(B), n(N))), p1, p2.

r1
5 : holds(C, nonce(A, n(N)), T ) ← holds(C, M, T ),

contains(M, 0, enc(pKey(B), A||B||n(N))), holds(C, sKey(B), 0), q1.

r2
5 : holds(C, nonce(A, n(N)), T ) ← holds(C, M, T ),

contains(M, 0, enc(pKey(B), A||n(N)), holds(C, sKey(B), 0), q2.

We have a set of marking rules:

Pm = {p1 ← not q1. p2 ← not q2. q1 ← not p1. q2 ← not p2.}

Then the updated program for our case study protocol with respect to update meth-

ods c1 and c2 is as follows:

Pu = (P − {ri}) ∪ {r∗i , r
1
i , r

2
i } ∪ Pm.

where i = 1, 2, 3, 4, 5.

Based on Equations (4.1) and (4.2) and the forgetting algorithm introduced pre-

viously, we obtain updated specifications for original protocol, update method c1

and c2 respectively.

P0 = WForgetLP (Pu, {q1, q2})

= (P − {r1, r2, r3, r4, r5}) ∪ {r∗1, r
∗
2, r

∗
3, r

∗
4, r

∗
5} ∪ {p1 ← . p2 ← .}

P1 = WForgetLP (Pu, {q2, p1})

= (P − {r1, r2, r3, r4, r5}) ∪ {r1
1, r

1
2, r

1
3, r

1
4, r

1
5} ∪ {q1 ← . p2 ← .}

P2 = WForgetLP (Pu, {q1, p2})

= (P − {r1, r2, r3, r4, r5}) ∪ {r2
1, r

2
2, r

2
3, r

2
4, r

2
5} ∪ {q2 ← . p1 ← .}

We can observe that after forgetting, program P0 is the same as the original spec-

ification program P (no repair happens). Program P1 keeps the update information

for update method c1 and program P2 for update method c2.

Program P1 and P2 can be re-analyzed as described in section 4.4. Because

both methods add the identification of sender in encrypted messages, they prevent
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the adversary from fabricating the initial message and avoid the unknown key share

attack. Take rule r5 from program P2 for instance: rule r5 is removed from program

P, and rules r∗5, r1
5 and r2

5 are generated into program Pu; rule r∗5 is removed by

forgetting atom p2 and rule r1
5 is removed by forgetting atom q1 from program Pu.

Finally, rule r2
5 remains in program Pu. After forgetting process, the marking rule,

q2 ← not p2, becomes q2 ←, which makes r2
5 is valid in program P2. In rule r2

5,

instead of from the principal set in rule r5, the principal C obtains the nonce owner

information from encrypted messages. ✷

4.6 Summary

We developed a unified framework for security protocol verification and update. In

our framework, we defined a logic based protocol specification language Lsp and

provided the methodology of protocol specification. Using Smodels, we do the pro-

tocol verification. Moreover, based on the forgetting algorithm of logic programs,

we defined a protocol update model which can be used to update a security protocol

with respect to a set of pre-defined update methods. Through the case study pro-

tocol, Boyd-González Nieto conference key agreement protocol, we illustrated how

to specify, verify and update security protocols using our approach.

In our approach, we have done some implementations using c++ programming.

After the protocol specification and verification, if attacks happen, the attack traces

should be identified. We implemented the attack tracing program to pick up the

attacks automatically. During the protocol update, the focus is the forgetting al-

gorithm in logic programs. We implemented this algorithm in which the input is

the grounded logic program obtained from lparse and after forgetting process the

output is a logic program in the format that can be accepted by smodels. The

program has been applied in our case study protocol.
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Conclusion

In this final chapter, we present the summary of the thesis and discuss further

research directions.

5.1 Summary of Research

In this thesis, we focused on logic programming based knowledge representations for

complex authorizations and security protocols.

For the authorization in open distributed environments, we adopt the trust man-

agement approach, in which designing a policy specification language with a rich

expressiveness and finding the theoretical foundation for the authorization decisions

are required. We developed the policy specification language AL, in which the

nonmonotonic feature distinguishes it from languages in many other trust manage-

ment systems. AL can be used to express nonmonotonic policies, delegation with

depth control, both positive and negative authorizations, complex subject struc-

tures, and separation of duty policies. The semantics of AL is defined based on

Answer Set Programming. We transformed an AL program into a logic program.

The transformation is achieved in linear time. With the nonmonotonic feature, AL

has the intractable computational property in general. We identified two tractable

subclasses of AL based on the notions of call consistent and locally stratified logic

programs respectively. Through two case studies, we demonstrated important ap-

plications of our approach.

We then applied our approach to the access control for XML documents. XML

has become a standard language for the representation and exchange of information

on the Internet. Due to the structures of XML, the access control to the elements in

137
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an XML document is possible. We have implemented a fine grained access control

prototype system for XML documents with the consideration of delegation. In our

system, we obtained a policy specification language AL∗ simplified from AL and

used its equivalent XML format XPolicy to express the authorization policies over

XML documents. The requester’s view in our system was computed based on the

semantics of the language AL∗. As a web application, the system was implemented

using JSP and Servlet techniques. Both the protected resources and the authoriza-

tion policy bases are XML documents. Then in the system design, we chose Xindice,

a native XML database system to store those XML information. The details of the

design concepts and implementation were also presented.

We developed a unified framework in which we not only use formal verification

under adversary models in the provable security theory, but also integrate protocol

analysis and update into the approach. As logic programming is a declarative ex-

ecutable approach for knowledge representation and reasoning, in our framework,

we defined a security protocol specification language Lsp under Answer Set Pro-

gramming to specify security protocols carrying claimed security proof under adver-

sary models. Using Smodels we verified protocols we have modelled. Furthermore,

through the proposed update model, we can update protocols that are found inse-

cure. As a case study, Boyd-González Nieto conference key agreement protocol has

been specified, verified and updated using our approach.

In summary, in this thesis we demonstrated significant applications of Answer Set

Programming as a formal representation mechanism in the areas of the authorization

specification and security protocol verification. More importantly, we believe that

the techniques and methods developed from this thesis make an important step

toward a better understanding of the complex distributed authorization and security

protocol verification and update.

5.2 Discussions of Future Directions

Much work remains to be done in this area. Here we list a few interesting research

directions on how this research can be further extended.
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• For the authorization in distributed environments, delegation is an important

feature that distinguishes distributed authorization from traditional central-

ized authorization. To answer an access request, our current approach in

Chapter 2 will only compute a result to grant, deny, or be undecided to the

request. However, very often, it is more useful to also explain why such request

can be granted, denied or undecided which is the Delegation Chain Discovery

problem. In a distributed environment, this could be difficult to achieve be-

cause the underlying delegation procedure may be very complex [67]. Using

Answer Set Programming, it is possible to efficiently retrieve such complex

delegation chains from the answer sets that we have computed.

Another important direction in this area is related to the temporal dimen-

sion of the authorization. In many real-world applications, users must be

given access authorizations to resources only for the time in which they are

expected to need them. Currently, AL does not specify time-dependant au-

thorizations. The temporal authorization extension of our work entails two

questions, including how to model the temporal intervals and how to model

the relationship between the temporal intervals in AL. We can extend AL to

express time by adding two extra parameters to each authorization atom for

representing the starting and ending time points of the interval. There exists

some research work [5, 63] on relations between time intervals, among which

Allen [5] found that a total of 13 possible disjoint relations may exist between

any two temporal intervals and proposed an algebra to represent a network

of interval relations. We can extend AL to model temporal interval relations

based on the existed algebra results.

• For the access control prototype system introduced in Chapter 3, two possible

improvements may be made:

– In the specification of objects, our approach only permitted the element

value and attribute values as the restriction for the element-spec. If

functions could be added as a condition to specify the elements, the

system should have a richer expressive power and more flexible.
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– In our approach, the answer sets of a logic program were computed by

creating a new process for SModels which is a c++ application program.

The system would be more efficient if SModels can be transplanted into

Java functions.

• In Chapter 4, we have chosen a case study protocol to demonstrate our protocol

verification and update framework. More protocols should be investigated to

find the popular sequence of games technique employed in many cryptographic

proofs.



Appendix A

Logic Programs for Authorization

Scenarios

A.1 The Program for Scenario 2.1

time(1..5).

subjects(alice;bob;carol;david;list).

gsub(list).

#domain subjects(X;Y;Z).

#domain gsub(G).

#domain time(T).

% Beginning of translation

assert(hrM,isAManager(alice)).

assert(hrM,isAnAuditor(bob)).

assert(hrM,isAnAuditor(carol)).

assert(hrM,isATech(david)).

% For auth transformation.

auth(local, list, right(+,recovery,key),1).

match(list,right(+,recovery,key)):-

auth(local,list,right(+,recovery,key),1),

1{req(X,right(+,recovery,key)): assert(hrM,isAManager(X))}1,

1{req(Y,right(+,recovery,key)): assert(hrM,isAnAuditor(Y))}1,

1{req(Z,right(+,recovery,key)): assert(hrM,isATech(Z))}1.
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% Request transformation

req(alice,right(+,recovery,key)).

req(bob,right(+,recovery,key)).

req(david,right(+,recovery,key)).

% Authorization rule.

exist_pos(X,right(+,recovery,key)):-

auth(local,X,right(+,recovery,key),T).

exist_neg(X,right(-,recovery,key)):-

auth(local,X,right(-,recovery,key),T).

ggrant(G,right(+,recovery,key)):-

auth(local,G,right(+,recovery,key),T),

match(G,right(+,recovery,key)),

not exist_neg(G,right(-,recovery,key)).

ggrant(G,right(-, recovery,key)):-

not exist_pos(G,right(+,recovery,key)).

A.2 The Program for Scenario 2.2

lenth(0..5).

sign(+;-).

obj(http;smtp;ftp;mysql;services).

sub(alice;bob;local;so;hrM).

#domain lenth(Step).

#domain lenth(T;T1;T2).

#domainlenth(Dep).

#domain sign(Sn).

#domain obj(O).

#domain sub(X;Y;Z).

below(http, services).
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below(mysql, services).

below(smtp, services).

below(ftp, services).

assert(hrM, isStaff(alice)).

assert(hrM, isStaff(bob)).

assert(hrM, onHoliday(alice)).

% delegation rule.

delegate(local, so, right(both,access,services),3,1).

% add implied rules.

delegate(local, so, right(both,access,O),3,1):-

delegate(local,so,right(both,access,services),3,1),

below(O,services).

auth(local,X,right(Sn,access,services),T+1):-

delegate(local,so,right(both,access,O),3,1),

auth(so,X,right(Sn,access,O),T).

delegate(local,X,right(both,access,O),min(3-Step,Dep),1+Step):-

delegate(local,so,right(both,access,O),3,1),

delegate(so,X,right(both,access,O),Dep,Step),

Step < 3.

delegate(so,so,right(both,access,services),Dep,1):-

delegate(local,so,right(both,access,services),3,1),

Dep <= 3.

delegate(local,so,right(both,access,services),Dep,1):-

delegate(local,so,right(both,access,services),3,1),
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Dep < 3.

auth(so,X,right(+,access,O),1):- assert(hrM,isStaff(X)),

below(O,services), neq(O,mysql).

auth(so,X,right(+,access,mysql),1):-

assert(hrM,isStaff(X)), not assert(hrM,onHoliday(X)).

% authorization rules.

exist_pos(X,right(+,access,O)):-

auth(local,X,right(+,access,O),T).

exist_neg(X,right(-,access,O)):-

auth(local,X,right(-,access,O),T).

grant(X,right(+,access,O)):-

auth(local,X,right(+,access,O),T),

not exist_neg(X,right(-,access,O)).

grant(X,right(-,access,O)):-

not exist_pos(X,right(+,access,O)).

%conflict rules.

pos_far(X,right(+,access,O),T1):-

auth(local, X, right(+,access,O),T1),

auth(local, X, right(-,access,O),T2),

T1>T2.

neg_far(X,right(-,access,O),T1):-

auth(local, X, right(-,access,O),T1),

auth(local, X, right(+,access,O),T2),
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T1>T2.

grant(X,right(pp,access,O)):-

auth(local, X, right(-,access,O),T1),

neg_far(X,right(-,access,O),T1),

auth(local, X, right(+,access,O),T2),

not pos_far(X, right(+,access,O),T2).

grant(X,right(-,access,O)):-

auth(local,X,right(+,access,O),T1),

auth(local, X, right(-,access,O),T2),

not neg_far(X, right(=,access,O),T2).
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Appendix B

The Syntax of Language AL∗

〈rule〉 ::= 〈head-stmt〉 [ if [ 〈list-of -body-stmt〉 ]

[ with absence 〈list-of -body-stmt〉 ] ]

〈head-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |

〈auth-stmt〉 | 〈delegate-stmt-head〉

〈list-of -body-stmt〉 ::= 〈body-stmt〉 | 〈body-stmt〉, 〈list-of -body-stmt〉

〈body-stmt〉 ::= 〈relation-stmt〉 | 〈assert-stmt〉 |

〈auth-stmt〉 | 〈delegate-stmt-body〉

〈relation-stmt〉 ::= “local” says 〈relation-atom〉

〈assert-stmt〉 ::= 〈sub〉 asserts 〈assert-atom〉

〈auth-stmt〉 ::= 〈sub〉 grants 〈auth-atom〉 to 〈sub〉

〈delegate-stmt-body〉 ::= 〈sub〉 delegates 〈auth-atom〉 with depth 〈k〉 to 〈sub〉

〈delegate-stmt-head〉 ::= 〈sub〉 delegates

〈auth-atom〉 with depth 〈k〉 to 〈sub-struct〉

〈relation-atom〉 ::= neq(〈entity〉, 〈entity〉) | eq(〈entity〉, 〈entity〉)

〈assert-atom〉 ::= exp(〈entity-set〉)

〈auth-atom〉 ::= right(〈sign〉, 〈priv〉, 〈obj〉)

〈obj〉 ::= 〈obj-con〉 | 〈obj-var〉

〈priv〉 ::= 〈priv-con〉 | 〈priv-var〉

〈sub〉 ::= 〈sub-con〉 | 〈sub-var〉

〈sub-set〉 ::= 〈sub〉 | 〈sub〉, 〈sub-set〉

〈sub-struct〉 ::= 〈sub〉 | “[”〈sub-set〉“]” | 〈threshold〉

〈entity〉 ::= 〈sub〉 | 〈obj〉 | 〈priv〉
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〈entity-set〉 ::= 〈entity〉 | 〈entity〉, 〈entity-set〉

〈sign〉 ::= + | − | ✷

〈k〉 ::= 〈natural-number〉

〈threshold〉 ::= 〈sth〉 | 〈dth〉

〈sth〉 ::= sthd(〈k〉, “[”〈sub-set〉“]”)

〈dth〉 ::= dthd(〈k〉, 〈sub-var〉, 〈assert-stmt〉)

〈query〉 ::= 〈sub〉 requests (+, 〈priv〉, 〈obj〉)
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An Example for the Policy Base

The complete version of the policy base in Example 3.4.

〈policybase〉

〈rule hnum=1 posbnum=0 negbnum=1〉

〈head〉

〈stmt-type〉auth-stmt〈/stmt-type〉

〈auth-stmt〉

〈issuer〉fA〈/issuer〉

〈sign〉p〈/sign〉

〈priv〉read〈/priv〉

〈obj〉Order.Customer〈/obj〉

〈sub〉X〈/sub〉

〈/auth-stmt〉

〈/head〉

〈negbody〉

〈stmt-type〉assert-stmt〈/stmt-type〉

〈assert-stmt〉

〈issuer〉fA〈/issuer〉

〈assertTitle argNum=1〉isACompetitor〈/assertTitle〉

〈arg〉

〈argTitle〉X〈/argTitle〉

〈arg-type〉subject〈/arg-type〉

〈/arg〉

〈/assert-stmt〉

〈/negbody〉

〈/rule〉

〈rule hnum=1 posbnum=1 negbnum=0〉
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〈head〉

〈stmt-type〉auth-stmt〈/stmt-type〉

〈auth-stmt〉

〈issuer〉fA〈/issuer〉

〈sign〉m〈/sign〉

〈priv〉read〈/priv〉

〈obj〉Order〈/obj〉

〈sub〉X〈/sub〉

〈/auth-stmt〉

〈/head〉

〈posbody〉

〈stmt-type〉assert-stmt〈/stmt-type〉

〈assert-stmt〉

〈issuer〉fA〈/issuer〉

〈assertTitle argNum=1〉isACompetitor〈/assertTitle〉

〈arg〉

〈argTitle〉X〈/argTitle〉

〈arg-type〉subject〈/arg-type〉

〈/arg〉

〈/assert-stmt〉

〈/posbody〉

〈/rule〉

〈rule hnum=1 posbnum=0 negbnum=0〉

〈head〉

〈stmt-type〉assert-stmt〈/stmt-type〉

〈assert-stmt〉

〈issuer〉fA〈/issuer〉

〈assertTitle argNum=1〉isACustomer〈/assertTitle〉

〈arg〉

〈argTitle〉a〈/argTitle〉

〈arg-type〉subject〈/arg-type〉
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〈/arg〉

〈/assert-stmt〉

〈/head〉

〈/rule〉

〈rule hnum=1 posbnum=0 negbnum=0〉

〈head〉

〈stmt-type〉assert-stmt〈/stmt-type〉

〈assert-stmt〉

〈issuer〉fA〈/issuer〉

〈assertTitle argNum=1〉isACompetitor〈/assertTitle〉

〈arg〉

〈argTitle〉d〈/argTitle〉

〈arg-type〉subject〈/arg-type〉

〈/arg〉

〈/assert-stmt〉

〈/head〉

〈/rule〉

〈rule hnum=1 posbnum=0 negbnum=0〉

〈head〉

〈stmt-type〉dele-stmt-head〈/stmt-type〉

〈dele-stmt-head〉

〈issuer〉fA〈/issuer〉

〈priv〉read〈/priv〉

〈obj〉Order.Parts〈/obj〉

〈step〉2〈/step〉

〈sub〉X〈/sub〉

〈/dele-stmt-head〉

〈/head〉

〈/rule〉

〈rule hnum=1 posbnum=0 negbnum=0〉

〈head〉
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〈stmt-type〉auth-stmt〈/stmt-type〉

〈auth-stmt〉

〈issuer〉a〈/issuer〉

〈sign〉p〈/sign〉

〈priv〉read〈/priv〉

〈obj〉aOrder〈/obj〉

〈sub〉d〈/sub〉

〈/auth-stmt〉

〈/head〉

〈/rule〉

〈/policybase〉
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The Logic Program for a Security

Protocol

The logic program for the Boyd-González Nieto conference key agreement protocol.

% The basic elements in the protocol

#const t_max = 4.

#const m = 3*(t+1).

time(0..t_max).

aid(0..2). % agent id

mid(0..m). % message id

mt(0..1). % message type

player(u1;u2).

adversary(a).

agent(u1;u2;a).

ag_id(u1,0).

ag_id(u2,1).

ag_id(a,2).

#domain time(T;T1;T2).

#domain mid(M;M1;N).

#domain aid(I).

#domain mt(P).

#domain agent(A;B;C;D).

#domain player(U1;U2;U).
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% Relationships between keys

key(pKey(A)).

key(sKey(A)).

key(sig_sKey(A)).

key(sig_vKey(A)).

asymKeyPair(pKey(A),sKey(A)).

asymKeyPair(sKey(A),pKey(A)).

asymKeyPair(sig_sKey(A),sig_vKey(A)).

asymKeyPair(sig_vKey(A),sig_sKey(A)).

% The message flows in the protocol

sends(u1,all,0,0,0).

contains(0,0,msg(agset(u1,u2)).

contains(0,0,msg(sign(sig_sKey(u1),

msg(agset(u1,u2),enc(pKey(u2),msg(n(0)))))).

contains(0,0,msg(enc(pKey(u2),msg(n(0))))).

holds(u1,nonce(u1,n(0)),0). holds(u1,agset(u1,u2),0).

gets(a,M,P,T+1):-sends(U,all,M,P,T).

gets(B,M,P,T+1):-sends(A,B,M,P,T),

neq(A,B), not intercept(a,M,P,T+1).

gets(B,M,P,T+1):-sends(A,all,M,P,T),

neq(A,B), not intercept(a,M,P,T+1).

sends(U,all,M1,1,T+1):-

gets(U,M,0,T), assign(M1,I*(t+1)+T+1),

ag_id(U,I).

contains(M1,1,msg(A,n(M1))):- sends(A,all,M1,1,T).
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holds(A,nonce(A,n(M1)),T):-

sends(A,all,M1,1,T),contains(M1,1,msg(A,n(M1))).

{intercept(a,M,0,T)}:- gets(a,M,0,T).

sends(a,B,M1,0,T):- intercept(a,M,0,T),

assign(M1,I*(t+1)+T), ag_id(a,I), holds(a,agset(A,B),T1).

contains(M1,0,msg(agset(a,U))):-

intercept(a,M,0,T), sends(a,U,M1,0,T).

contains(M1,0,msg(sign(sig_sKey(a),

msg(agset(a,U),enc(pKey(U),msg(n(M))))):-

intercept(a,M,0,T),sends(a,U,M1,0,T).

contains(M1,0,msg(enc(pKey(U),msg(n(M))))):-

intercept(a,M,0,T), sends(a,U,M1,0,T).

% Knowledge

holds(A,pKey(B),0).

holds(A,sig_vKey(B),0).

holds(A,sKey(A),0).

holds(A,sig_sKey(A),0).

holds(A,M,T):- gets(A,M,P,T).

holds(A,nonce(B,n(N)),T):- holds(A,M,T),

contains(M,1,msg(B,n(N))).

holds(C,agset(A,B),T):-

holds(C,M,T), contains(M,0,msg(agset(A,B))).
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holds(C,nonce(A,n(N)),T):- holds(C,M,T),

holds(C,sKey(B),0), contains(M,0,msg(agset(A,B))),

contains(M,0,enc(pKey(B),msg(n(N)))).

% Attacks

sk(A,h(n(M),n(M1))):- holds(A,agset(B,C),T),

holds(A,nonce(B,n(M)),T1), holds(A,nonce(C,n(M1)),T2).

same_sk_pair(A,B):-

sk(A,h(n(M),n(M1))), sk(B,h(n(M),n(M1))), neq(A,B).

inSidList(U,M):- sends(U,all,M,P,T).

inSidList(U,M):- gets(U,M,P,T).

sid_neq_pair(U,U1):-

inSidList(U,M), not inSidList(U1,M),neq(U,U1).

same_sid_pair(U,U1):- not sid_neq_pair(U,U1),

not sid_neq_pair(U1,U), neq(U,U1).

attack:- same_sk_pair(U,U1), not same_sid_pair(U,U1).

:- not attack.
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The Publication List During the

PhD Study

The following papers have been published, and contain materials based on the con-

tent of this thesis.

1. S. Wang and Y. Zhang. Answer set programming for distributed authorization:

the language, computations, and application. In Proceedings of the AI2005:

18 th Australian Joint Conference on Artificial Intelligence, pp. 1191-1194,

2005.

2. S. Wang and Y. Zhang. Specifying distributed authorization with delegation

using logic programming. In Proceedings of the 9th International Conference

on Knowledge-Based & Intelligent Information & Engineering Systems, pp.

761-767, 2005.

3. S. Wang and Y. Zhang. A formalization of distributed authorization with

delegation. In Proceedings of the 10th Australian Conference on Information

Security and Privacy, pp. 303-315, 2005.

4. S. Wang and Y. Zhang. Handling distributed authorization with delegation

through answer set programming. International Journal of Information Secu-

rity, 6(1): 27-46, 2007.
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change in the Canetti-Krawczyk proof model (Extended version available from

http://sky.fit.qut.edu.au/ boydc/). In INDOCRYPT 2004, pp. 17-32, 2004.

[55] M. Harrison, W. Ruzzo, and J. Ullman. Protection in operating systems. Com-

munications of the ACM, 19(8): 461-471, 1976.

[56] ITU-T Rec. X.509 (revised), The directory - authentication framework, Inter-

national Telecommunication Union.

[57] S. Jajodia, P. S amarati, and V. S. Subrahmanian. A logic language for ex-

pressing authorizations. In Proceedings of the IEEE Symposium on Security and

Privacy, pp. 31–42, 1997.

[58] S. Jajodia, P. Samarati, and V. S. Subrahmanian. Flexible support for multiple

access control policies. ACM Transactions on Database Systems, 26(2): 214-260,

2001.

[59] T. Jim. SD3: A trust management system with certified evaluation. In IEEE

Symposium on Security and Privacy, pp. 106-115, 2001.

[60] I. R. Jeong, J. Katz, and D. H. Lee. One-round protocols for two-party authen-

ticated key exchange. In ACNS 2004, pp. 220-232, 2004.

[61] S. T. Kent. Internet privacy enhanced mail, Communications of the ACM,

36(8): 48-60, 1993.

[62] H. Krawczyk. HMQV: a high-performance secure Diffie-Hellman protocol. In

CRYPTO 2005, pp. 546-566, 2005.

[63] A. Krokhin, P. Jeavons, P. Jonsson. Reasoning about Temporal Relations: The

Tractable Subalgebras of Allens Interval Algebra. Journal of the ACM, 50(5):591-

640, 2003.



Bibliography 165

[64] C. Kudla and K. G. Paterson. Modular security proofs for key agreement pro-

tocols. In ASIACRYPT 2005, pp. 549-569, 2005.

[65] B. W. Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18-

24, 1974.

[66] N. Li, J. Feigenbaum, and B.N. Grosof. A logic-based knowledge representation

for authorization with delegation (extended abstract). In Proceedings of the IEEE

Computer Security Foundations Workshop, pp. 162-174, 1999.

[67] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain

discovery in trust management. Journal of Computer Security, 11(1): 35-86, 2003.

[68] N. Li and J. Mitchell. RT: A role-based trust-management framework. In

DARPA Information Survivability Conference and Exposition (DISCEX), pp. 201-

212, 2003.

[69] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust

management framework. In Proceedings of the 2002 IEEE Symposium on Security

and Privacy, pp. 114-130, 2002.

[70] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: a logic-based ap-

proach to distributed authorization. ACM Transactions on Information and Sys-

tem Security (TISSEC), 6(1): 128-171, 2003.

[71] F. Lin and R. Reiter, Forget it! In Working Notes of AAAI Fall Symposium on

Relevance, pp. 154-159, 1994.

[72] G. Lowe. Some new attacks upon security protocols. In Proceedings of the 9th

IEEE Computer Security Foundatons Workshop, pp. 162-169, 1996.

[73] J. McLean. Security models. In Encyclopedia of Software Engineering. John

Wiley & Sons, 1994.

[74] I. Niemela, P. Simons, and T. Syrjanen. Smodels: a system for answer set pro-

gramming. In Proceedings of the 8th International Workshop on Non-monotonic

Reasoning, 2000.



166 Bibliography

[75] NIST. American National Standard 359-2004.

http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf.

[76] L. C. Paulson. The inductive approach to verifying cryptographic protocols.

Journal of Computer Security 6(1): 85-128, 1998.

[77] P. Resnick and J. Miller. PICS: Internet access controls without censorship.

Communications of the ACM, 39(10): 87-93, 1996.

[78] R. L. Rivest and B. Lampson. SDSI - a simple distributed security infrastruc-

ture. 1996. http://theory.lcs.mit.edu/ rivest/sdsi11.html.

[79] J. Wu, J. Seberry, Y. Mu, and C. Ruan. Delegatable access control for fine-

grained XML. In Proceedings of the 11th International Conference on Parallel

and Distributed Systems, pp. 270-274, 2005.

[80] C. Ruan and V. Varadharajan. Resolving conlicts in authorization delegations.

In Proceedings of the 7th Australian Conference on Information Security and Pri-

vacy, pp. 271-285, 2002.

[81] C. Ruan and V. Varadharajan. A weighted graph approach to authorization

delegation and conflict resolution. In Proceedings of the 9th Australian Conference

on Information Security and Privacy, pp. 402-413, 2004.

[82] C. Ruan, V. Varadharajan and Y. Zhang. Logic-based reasoning on delegatable

authorizations. In Proceedings of the 13th International Symposium on Founda-

tions of Intelligent Systems, pp. 185-193, 2002.

[83] P. Ryan and S. Schneider. An attack on a recursive authentication protocol: a

cautionary tale. Information Processing Letters, 65(15): 7-16, 1998.

[84] P. Samarati and S. De Capitani di Vimercati. Access control: policies, models,

and mechanisms. Foundations of Security Analysis and Design, 2001.

[85] R. Sandhu. The typed access matrix model. In Proceedings of the IEEE sym-

posium on Research in SEcurity and Privacy, pp. 122-136, 1992.



Bibliography 167

[86] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based

access control models. IEEE Computer, 29(2):38-47, 1996.

[87] V. Shoup. On formal models for secure key exchange (Version 4) (Technical

Report No. RZ3120(#93166)). IBM Research, Zurich.

[88] V. Shoup. OAEP reconsidered. In Advances in Cryptology - Crypto 2001, pp.

239-259.

[89] T. Syrjänen. Lparse 1.0 User’s Mannual.

http://www.tcs.hut.fi/Software/smodels.

[90] P. Syverson and P. van Oorschot. On unifying some cryptographic protocol

logics. In Proceedings of 1994 IEEE Computer Security Foundations Workshop

VII, pp. 14C29, 1994.

[91] J. Trevor and D. Suciu. Dynamically distributed query evaluation. In Proceed-

ings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, pp. 28 - 39, 2001.

[92] A. Van Hoff, H. Partovi, and T. Thai. The Open Software Description Format

(OSD), 1997. http://www.w3.org/TR/NOTE-OSD.html.

[93] S. Wang and Y. Zhang. Answer set programming for distributed authorization:

the language, computations, and application. In Proceedings of the AI2005: 18 th

Australian Joint Conference on Artificial Intelligence, pp. 1191-1194, 2005.

[94] S. Wang and Y. Zhang. Specifying distributed authorization with delegation

using logic programming. In Proceedings of the 9th International Conference on

Knowledge-Based & Intelligent Information & Engineering Systems, pp. 761-767,

2005.

[95] S. Wang and Y. Zhang. A formalization of distributed authorization with dele-

gation. In Proceedings of the 10th Australian Conference on Information Security

and Privacy, pp. 303-315, 2005.



168 Bibliography

[96] S. Wang and Y. Zhang. Handling distributed authorization with delegation

through answer set programming. International Journal of Information Security,

6(1): 27-46, 2007.

[97] T. Y.C. Woo and S. S. Lam, Authorization in distributed systems: a new

approach. Journal of Computer Security, 2(2-3): pp. 107-136, 1993.

[98] Xindice 1.1 User Guide. Avalable at: http://xml.apache.org/xindice/guide-

user.html.

[99] Y. Zhang. Two results for prioritized logic programming. Theory and Practice

of Logic Programming, 3(2): 223-242, 2003.

[100] Y. Zhang and N. Foo. Solving logic program conflict through strong and weak

forgettings. Artificial Intelligence, 170(8-9): 739-778, 2006.


